精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率为,点为坐标原点,若椭圆与曲线的交点分别为上),且两点满足

(1)求椭圆的标准方程;

(2)过椭圆上异于其顶点的任一点,作的两条切线,切点分别为,且直线轴、轴上的截距分别为,证明:为定值.

【答案】(1);(2)见解析

【解析】

试题分析:(1),然后根据向量数量积求得的值,再结合离心率求得的值,由此求得椭圆方程;(2).设点,然后根据条件求得的方程,从而求得直线轴、轴上的截距为,进而使问题得证.

试题解析:(1)设椭圆的半焦距为,设,则

,得

又椭圆的离心率为,所以

①②③,解得

故椭圆的标准方程为.................................. 6分

(2)如图,设点,由的切点知,

所以四点在同一圆上,且圆的直径为

则圆心为,其方程为

即点满足话中,又点都在上,

所以坐标也满足方程

-得直线的方程为

,得;令,得,所以

又点在椭圆上,所以,即中,

,即为定值.........................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线互相平行,求的值;

2)求的单调区间;

3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

的极值点,求实数的值;

上为增函数,求实数的取值范围;

III时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.

(1)求油罐被引爆的概率

(2)如果引爆或子弹打光则停止射击,设射击次数为,的分布列及.( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,右顶点为,上顶点为,已知

(1)求椭圆的离心率;

(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,侧棱垂直于底面,分别是的中点

(1)求证: 平面平面

(2)求证: 平面

(3)求三棱锥体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记表示中的最大值,如,已知函数.

1)求函数上的值域;

2)试探讨是否存在实数, 使得恒成立?若存在,求的取值范围;

若不存在,说明理由.

查看答案和解析>>

同步练习册答案