精英家教网 > 高中数学 > 题目详情
若实数x,y,m满足|x-m|<|y-m|,则称x比y更接近m.
(1)若x2比4更接近1,求x的取值范围;
(2)a>0时,若x2+a比(a+1)x更接近0,求x的取值范围.
分析:(1)依题意,|x2-1|<3,解之可求得答案;
(2)由x2+a<|(a+1)x|,两端平方,之后移项化积,对a分类讨论即可.
解答:解:(1)由题意,|x2-1|<3(2分)
∴-3<x2-1<3(3分)
得x∈(-2,2)(5分)
(2)据题意,x2+a<|(a+1)x|,
(x2+a)2<[(a+1)x]2
[x2-(a+1)x+a]•[x2+(a+1)x+a]=(x-1)(x-a)(x+1)(x+a)<0(8分)
当0<a<1时,x∈(-1,-a)∪(a,1);
当a=1时,这样的x不存在;
当a>1时,x∈(-a,-1)∪(1,a)(12分)
点评:本题考查绝对值不等式的解法,考查转化思想与分类讨论思想的综合应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y,m满足|x-m|<|y-m|,则称x比y靠近m.
(Ⅰ)若x+1比-x靠近-1,求实数x的取值范围;
(Ⅱ)①对任意x>0,证明:ln(1+x)比x靠近0;②已知数列{an}的通项公式为an=1+21-n,证明:a1a2a3…an<2e.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.若x2-1比1远离0,则x的取值范围是
(-∞,-
2
)∪(
2
,+∞)
(-∞,-
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若2x-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

查看答案和解析>>

同步练习册答案