精英家教网 > 高中数学 > 题目详情

【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占.

一次购物量

13

47

811

1215

16件及以上

顾客数(人)

27

20

10

结算时间(/人)

0.5

1

1.5

2

2.5

1)确定的值,并求顾客一次购物的结算时间的平均值;

2)从收集的结算时间不超过的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为的概率.(注:将频率视为概率)

【答案】1;(2

【解析】

1)由条件可得,从而可求出的值,再计算顾客一次购物的结算时间的平均值
2)结算时间不超过的顾客有45人,则按分层抽样抽取5人,从结算时间为的人中抽取2人,从结算时间为的人中抽取3人,列举出基本事件数,再列举出至少有1人结算时间为所包含基本事件数,用古典概率可求解.

解:(1)由已知得,∴

,∴.

该超市所有顾客一次购物的结算时间组成一个总体,
所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,
顾客一次购物的结算时间的平均值可用样本平均数估计,
其估计值为.

2)结算时间不超过共有45人,其中结算时间为的有18人,
结算时间为的有27人,
结算时间为的人数:结算时间为的人数
则按分层抽样抽取5人,从结算时间为的人中抽取人,
从结算时间为的人中抽取.

记抽取结算时间为2人分别为
抽取结算时间为3人分别为
表示抽取的两人为,基本事件共有10个:


.

记至少有1人结算时间为为事件包含基本事件共有7个:

,故至少有1人结算时间为的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,平面外一点在平内的射影恰在边的中点上,

1)求证:平面平面

2)若在线段上,且平面,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别是椭圆的顶点.过坐标原点的直线交椭圆于两点,其中在第一象限.过点轴的垂线,垂足为.设直线的斜率为.

1)若直线平分线段,求的值;

2)当时,求点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(3,﹣4)作圆(x1)2+y22的切线,切点分别为AB,则直线AB的方程为(  

A.x+2y20B.x2y10C.x2y20D.x+2y+20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).

1)求频率分布直方图中x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);

2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;

3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在的学生至少有1人被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点在棱.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,过点的直线lE交于AB两点.l过点F时,直线l的斜率为,当l的斜率不存在时,.

1)求椭圆E的方程.

2)以AB为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案