【题目】已知函数,其中.
(1)当时,求曲线在点处的切线方程;
(2)当时,求函数的单调区间与极值.
【答案】(1)(2)见解析
【解析】试题分析: (1)利用导数的几何意义:切线斜率等于,再根据点斜式求切线方程;(2)先明确函数的定义域,再求函数导数,研究导函数在定义域上的零点: 由,得,分类讨论两个零点的大小,再结合列表确定函数的单调区间与极值.
试题解析:(1)当时, ,此时,
所以
又因为切点为,所以切线方程
曲线在点处的切线方程为
(2)由于,
所以
由,得
(1)当时,则,易得在区间, 内为减函数,
在区间为增函数,故函数在处取得极小值
函数在处取得极大值
当时,则,易得在区间, 内为增函数,
在区间为减函数,故函数在处取得极小值;
函数 在处取得极大值
点睛:本题考查导数的几何意义,属于基础题目. 函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为: .求函数y=f(x)在点P(x0,y0)处的切线方程与求函数y=f(x)过点P(x0,y0)的切线方程意义不同,前者切线有且只有一条,且方程为y-y0=f′(x0)(x-x0),后者可能不只一条.
科目:高中数学 来源: 题型:
【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
B. 在线性回归分析中,回归直线不一定过样本点的中心
C. 在回归分析中, 为0.98的模型比为0.80的模型拟合的效果好
D. 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(Ⅰ)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;
(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记表示抽到“极满意”的人数,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com