精英家教网 > 高中数学 > 题目详情

【题目】求椭圆的标准方程
(1)已知某椭圆的左右焦点分别为F1(﹣1,0),F2(1,0),且经过点P( ),求该椭圆的标准方程;
(2)已知某椭圆过点( ,﹣1),(﹣1, ),求该椭圆的标准方程.

【答案】
(1)解:

又椭圆焦点为(±1,0),所以b=1,

所以椭圆方程为


(2)解:设椭圆方程为mx2+ny2=1,则有

解得 ,所以椭圆方程为


【解析】(1)利用椭圆的定义,结合焦点坐标求出基本量,即可求该椭圆的标准方程;(2) 设椭圆方程为mx2+ny2=1,利用待定系数法求该椭圆的标准方程.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′﹣BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′﹣BCDE体积的最大值为
其中正确的是(填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面积是 ,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是:( )

A. 命题“若,则”的否命题为“若,则

B. 命题“存在,使得”的否定是:“任意,都有

C. 若命题“非”与命题“”都是真命题,那么命题一定是真命题

D. 命题“若,则”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=2an﹣1(n∈N+),a1=2.
(1)求证:数列{an﹣1}为等比数列,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;

(2)已知数列的通项公式是,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)证明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

同步练习册答案