精英家教网 > 高中数学 > 题目详情
5.设函数f(x),g(x)的定义域分别为Df,Dg,且Df?Dg,若对于任意x∈Df,都有g(x)=f(x),则称函数g(x)为f(x)在Dg上的一个延拓函数.设f(x)=2x,x∈(-∞,0),g(x)为f(x)在R上的一个延拓函数.
(1)若g(x)是奇函数,则g(x)=$\left\{\begin{array}{l}{-{2}^{-x},x>0}\\{0,x=0}\\{{2}^{x},x<0}\end{array}\right.$;
(2)若g(x)满足:①当x≥0,g(x)=$\frac{ax+b}{x+1}$;
②值域为(0,2);
③对于任意的x1,x2∈R,且x1≠x2,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{x}-{x}_{2}}$>0,
则实数a,b的取值分别为2,1.

分析 (1)分段求出函数g(x)的表达式,再综合得g(x)=$\left\{\begin{array}{l}{-{2}^{-x},x>0}\\{0,x=0}\\{{2}^{x},x<0}\end{array}\right.$;
(2)根据题设可得,g(x)=$\frac{ax+b}{x+1}$的取值能包含[1,2),且g(0)=1,当x→+∞时,g(x)=$\frac{a+\frac{b}{x}}{1+\frac{1}{x}}$→a=2.

解答 解:(1)因为g(x)为f(x)的延拓函数,且g(x)为奇函数,所以,
①当x<0时,g(x)=f(x)=2x,②当x=0时,g(x)=0,③当x>0时,g(x)=-f(-x)=-2-x
综合以上讨论得,所以,g(x)=$\left\{\begin{array}{l}{-{2}^{-x},x>0}\\{0,x=0}\\{{2}^{x},x<0}\end{array}\right.$;
(2)当x<0时,g(x)=f(x)=2x∈(0,1),且x→0时,g(x)→1,
由于g(x)的值域为(0,2),
所以,当x≥0时,g(x)=$\frac{ax+b}{x+1}$的取值能包含[1,2),
又∵对于任意的x1,x2∈R,且x1≠x2,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{x}-{x}_{2}}$>0,
∴g(x)在R上单调递增,所以,g(0)=1,解得b=1,
当x→+∞时,g(x)=$\frac{a+\frac{b}{x}}{1+\frac{1}{x}}$→a,故a=2,
因此,当x≥0时,g(x)=$\frac{ax+b}{x+1}$=$\frac{2x+1}{x+1}$.
故答案为:(1)g(x)=$\left\{\begin{array}{l}{-{2}^{-x},x>0}\\{0,x=0}\\{{2}^{x},x<0}\end{array}\right.$;(2)a=2,b=1.

点评 本题主要考查了函数性质的综合应用,涉及函数的奇偶性,解析式,单调性,值域,以及分段函数的表示,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.小强从学校放学回家,先跑步后步行,如果y表示小强离学校的距离,x表示从学校出发后的时间,则下列图象中最有可能符合小强走法的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示是函数y=2sin(ωx+φ)(ω>0,|φ|<π)的图象的一部分,求
(1)ω,φ的值.
(2)函数图象的对称轴方程和对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知空间四边形ABCD的边BC=AC,AD=BD,BE⊥CD于点E,AH⊥BE于点H,求证:AH⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设空间两个单位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)与向量$\overrightarrow{OC}$=(1,1,1)的夹角都等于$\frac{π}{4}$,求cos∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(1,-1),求5$\overrightarrow{a}$•3$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点A,C关于y轴对称,点A,B关于原点对称.
(1)若椭圆的离心率为$\frac{\sqrt{2}}{2}$,且A($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),求椭圆的标准方程;
(2)设D为直线BC与x轴的交点,E为椭圆上一点,且A,D,E三点共线,若直线AB,BE的斜率分别为k1,k2,试问,k1•k2是否为定值?若是,求出该定值;若不是,请加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数y=x2-2ax+3,x∈[-1,1],设最大值为g(a),最小值为h(a).
(1)求g(a).
(2)求h(a).
(3)设a∈[0,1],若对任意的g(a),h(a),不等式g(a)log2m+2h(a)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{5}$=1有共同焦点,过点(3$\sqrt{2}$,$\sqrt{2}$)的双曲线的标准方程.

查看答案和解析>>

同步练习册答案