精英家教网 > 高中数学 > 题目详情

【题目】已知α,β∈(0, )且sin(α+2β)=
(1)若α+β= ,求sinβ的值;
(2)若sinβ= ,求cosα的值.

【答案】
(1)解:∵α,β∈(0, ),sin(α+2β)= ,α+β=

∴cos(α+2β)=﹣

∴sinβ=sin[(α+2β)﹣ ]= ﹣(﹣ )× =


(2)解:∵sinβ= ,β∈(0, ),

∴cosβ=

∴sin2β=2sinβcosβ= ,cos2β=2cos2β﹣1=﹣

∴2β∈( ,π),

又∵α,β∈(0, ),sin(α+2β)=

∴cos(α+2β)=﹣

∴cosα=cos(α+2β﹣2β)=(﹣ )×(﹣ )+ =


【解析】(1)由已知利用同角三角函数基本关系式可求cos(α+2β)的值,由β=(α+2β)﹣ ,利用两角差的正弦函数公式即可计算得解.(2)由已知利用同角三角函数基本关系式可求cosβ,进而利用倍角公式可求sin2β,cos2β的值,结合范围2β∈( ,π),可求cos(α+2β)的值,由α=α+2β﹣2β,利用两角差的余弦函数公式即可计算得解.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2 sin(x+ )cos(x﹣ )﹣cos2x﹣
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在[﹣ π]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系.曲线C的极坐标方程为ρ=2cosθ.

(1)求直线l的普通方程与曲线C的直角坐标方程

(2)求出直线l与曲线C相交后的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两曲线f(x)=cosx,g(x)= sinx,x∈(0, )相交于点A.若两曲线在点A处的切线与x轴分别相交于B,C两点,则线段BC的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角所在平面外一点,且为斜边的中点.

(1)求证:平面

(2)若,求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x﹣2y+2与圆C:x2+y2﹣4y+m=0相交,截得的弦长为
(1)求圆C的方程;
(2)过点M(﹣1,0)作圆C的切线,求切线的直线方程;
(3)若抛物线y=x2上任意三个不同的点P、Q、R,且满足直线PQ和PR都与圆C相切,判断直线QR与圆C的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系为极点 轴正半轴为极轴建立极坐标系的极坐标方程为直线的参数方程为为参数),直线和圆交于两点 是圆上不同于的任意一点

(1)求圆心的极坐标;

(2)求点到直线的距离的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O是锐角△ABC的外接圆的圆心,且∠A= ,若 + =2m ,则m=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有(  )

A. 144种 B. 72种 C. 64种 D. 84种

查看答案和解析>>

同步练习册答案