精英家教网 > 高中数学 > 题目详情
(2012•青岛一模)星空电视台组织篮球技能大赛,每名选手都要进行运球、传球、投篮三项比赛,每个选手在各项比赛中获得合格与不合格的机会相等,且互不影响.现有A、B、C、D、E、F六位选手参加比赛,电视台根据比赛成绩对前2名进行表彰奖励.
(Ⅰ)求A至少获得一个合格的概率;
(Ⅱ)求A与B只有一个受到表彰奖励的概率.
分析:(Ⅰ)根据题意将投篮合格、不合格分别编号,再列出所有的基本事件,再由古典概型公式,计算可得答案;
(Ⅱ)根据题意将所有受到表彰奖励可能的结果一一列出,再由古典概型公式,计算可得答案.
解答:解:(Ⅰ)记A运球,传球,投篮合格分别记为W1,W2,W3,不合格为
.
W
1
.
W
2
.
W3

则A参赛的所有可能的结果为(W1,W2,W3),(
.
W
1
W2W3
),(W1
.
W2
W3
),(W1W2
.
W3
),
.
W1
.
W2
W3
),(
.
W1
W2
.
W3
),(W1
.
W2
.
W3
),(
.
W1
.
W2
.
W3
)共8种,
由上可知A至少获得一个合格对应的可能结果为7种,
∴A至少获得一个合格的概率为:P=
7
8

(Ⅱ)所有受到表彰奖励可能的结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},
{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,
则A与B只有一个受到表彰奖励的结果为{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8种
则A与B只有一个受到表彰奖励的概率为P=
8
15
点评:本题考查古典概型的计算,涉及列举法的应用,解题的关键是正确列举,分析得到事件的情况数目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•青岛一模)已知a>b,函数f(x)=(x-a)(x-b)的图象如图所示,则函数g(x)=loga(x+b)的图象可能为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知等差数列{an}的公差大于零,且a2,a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{bn}的前n项和为Sn,且满足b3=a3,S3=13.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=
an ,n≤5
b ,n>5
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知实数集R,集合M={x|0<x<2},集合N={x|y=
1
x-1
}
,则M∩(?RN)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知锐角△ABC中内角A、B、C的对边分别为a、b、c,且a2+b2=c2+ab.
(Ⅰ)求角C的值;
(Ⅱ)设函数f(x)=sin(ωx-
π6
)-cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2
6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若
QP
=2
PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

同步练习册答案