精英家教网 > 高中数学 > 题目详情
(2013•石家庄二模)选修4-1:几何证明选讲
在Rt△ABC中,∠B=90°,AB=4,BC=3,以AB为直径做圆0交AC于点D.
(Ⅰ)求线段CD的长度;
(Ⅱ)点E为线段BC上一点,当点E在什么位置时,直线ED与圆0相切,并说明理由.
分析:(I)由勾股定理易求得AB的长;可连接BD,由圆周角定理知AD⊥BD,易知△ABC∽Rt△BDC,可得关于AC、CD、BC的比例关系式,即可求出CD的长.
(II)当ED与⊙O相切时,由切线长定理知ED=EB,则∠EBD=∠EDB,那么∠OBD和∠ODB就是等角的余角,由此可证得BE=CE,即E是BC的中点.在证明时,可连接OD,证OD⊥DE即可.
解答:解:(Ⅰ)连结BD,在直角三角形ABC中,易知AC=5,∠BDC=∠ADB=90°,…(2分)
所以∠BDC=∠ABC,又因为∠C=∠C,所以△ABC∽Rt△BDC,
所以
CD
BC
=
BC
AC
,所以CD=
BC2
AC
=
9
5
.…(5分)
(Ⅱ)当点E是BC的中点时,ED与⊙O相切;
证明:连接OD,
∵DE是Rt△BDC的中线;
∴ED=EB,
∴∠EBD=∠EDB;
∵OB=OD,
∴∠OBD=∠ODB;
∴∠ODE=∠ODB+∠BDE=∠OBD+∠EBD=∠ABC=90°;
∴ED⊥OD,
∴ED与⊙O相切.
点评:此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•石家庄二模)在△ABC中,若∠A=60°,∠B=45°,BC=3
2
,则AC=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)tan(-150°)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)已知i是虚数单位,则复数
1+3i
1-i
的模为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)下列函数中,在定义域上既是减函数又是奇函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)已知一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn)其样本点的中心为(2,3),若其回归直线的斜率的估计值为-1.2,则该回归直线的方程为(  )

查看答案和解析>>

同步练习册答案