精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-ax+(a-1)lnx,a>1.
(1)若a>2,讨论函数f(x)的单调性;
(2)已知a=1,g(x)=2f(x)+x3,若数列{an}的前n项和为Sn=g(n),证明:(n≥2,n∈N+).
【答案】分析:(1)利用导数研究函数的单调区间,注意极值点大小的比较;
(2)把a=1代入f(x)再代入g(x),利用公式an=sn-sn-1,求出an的通项的公式,再利用放缩法进行证明;
解答:解:(1)函数f(x)=x2-ax+(a-1)lnx,a>1.
根据对数函数的性质,可得x>0,
∴f′(x)=x-a+=
∵a>2,∴a-1>1,
则f(x)在(1,a-1)上f′(x)<0,f(x)为减函数;
f(x)在(0,1),(a-1,+∞)上f′(x)>0,f(x)为增函数;
(2)已知a=1,可得f(x)=x2-x,∵g(x)=2f(x)+x3=x3+x2-2x,
∵数列{an}的前n项和为Sn=g(n),
∴Sn=g(n)=n3+n2-2n,∵an=sn-sn-1,(n≥2)
∴an=n3+n2-2n-[(n-1)3+(n-1)2-2(n-1)]=3n2-n-2,
∴an=
∴an=3n2-n-2,
==-),
[1-+-+…+-]=(1-)<
点评:此题主要考查函数的单调性与其单调性的证明,导数是研究函数的最好的工具,第二问难度有些大,主要是求出数列的通项公式,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案