精英家教网 > 高中数学 > 题目详情

【题目】中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟?

A. B. C. D.

【答案】D

【解析】

根据题意可知,羊马牛的三主人应偿还的量构成了公比为2的等比数列,而前3项和为50升,即可利用等比数列求和公式求出,进而求出马主人应该偿还的量.

因为=升,设羊、马、牛的主人应偿还的量分别为

由题意可知其构成了公比为2的等比数列,且

,解得

所以马主人要偿还的量为:

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,经过点F的直线与抛物线C交于不同的两点AB的最小值为4.

1)求抛物线C的方程;

2)已知PQ是抛物线C上不同的两点,若直线恰好垂直平分线段PQ,求实数k 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左、右焦点分别是,点的上顶点,点上,,且.

1)求的方程;

2)已知过原点的直线与椭圆交于两点,垂直于的直线且与椭圆交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆:和定点,是圆上任意一点,线段的垂直平分线交于点,设动点的轨迹为.

(1)求的方程;

(2)过点作直线与曲线相交于,两点(,不在轴上),试问:在轴上是否存在定点,总有?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,则实数a的取值范围为(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是(

A.他们健身后,体重在区间[90kg100kg)内的人数不变

B.他们健身后,体重在区间[100kg110kg)内的人数减少了4

C.他们健身后,这20位健身者体重的中位数位于[90kg100kg

D.他们健身后,原来体重在[110kg120kg]内的肥胖者体重都至少减轻了10kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若函数4个不同的零点,且,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求实数的取值范围.

查看答案和解析>>

同步练习册答案