5£®ÒÑÖªÊýÁÐ{an+1}ÊǵȱÈÊýÁУ¬a3=3£¬a6=31£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬b1=1£¬ÇÒnSn+1-£¨n+1£©Sn=$\frac{1}{2}$n£¨n+1£©£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Éècn=$\frac{b_n}{{{a_n}+1}}$£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪTn£¬Èô²»µÈʽTn¡Ým-$\frac{9}{2^n}$¶ÔÓÚn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýmµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓÃÒÑÖªÌõ¼þͨ¹ýµÈ±ÈÊýÁÐÇó½âͨÏʽ${a_n}={2^{n-1}}-1$£¬ÀûÓÃ$n{S_{n+1}}-£¨n+1£©{S_n}=\frac{1}{2}n£¨n+1£©$µÃ$\left\{{\frac{S_n}{n}}\right\}$ÊÇÒÔ$\frac{S_1}{1}=1$ΪÊ×Ï$\frac{1}{2}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬Çó³öSn£¬È»ºóÇó½â{bn}µÄͨÏʽ£®
£¨2£©»¯¼ò${c_n}=\frac{b_n}{{{a_n}+1}}=\frac{n}{{{2^{n-1}}}}$£¬ÀûÓôíλÏà¼õ·¨Çó³öTn£¬×ª»¯²»µÈʽΪ$4-\frac{2n-5}{2^n}¡Ým$ºã³ÉÁ¢£¬ÀûÓÃ×îÖµÇó½âʵÊýmµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉa3=3£¬a6=31£¬µÃa3+1=4£¬a6+1=32£¬
ËùÒÔ${a_n}+1={2^{n-1}}$£¬¡à${a_n}={2^{n-1}}-1$£¬¡­£¨2·Ö£©
ÓÉ$n{S_{n+1}}-£¨n+1£©{S_n}=\frac{1}{2}n£¨n+1£©$µÃ£¬$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$£¬
¹Ê$\left\{{\frac{S_n}{n}}\right\}$ÊÇÒÔ$\frac{S_1}{1}=1$ΪÊ×Ï$\frac{1}{2}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬
Ôò$\frac{S_n}{n}=1+\frac{1}{2}£¨n-1£©$£¬ËùÒÔ${S_n}=\frac{n£¨n+1£©}{2}$£¬¡­£¨4·Ö£©
µ±n¡Ý2ʱ£¬${b_n}={S_n}-{S_{n-1}}=\frac{n£¨n+1£©}{2}-\frac{n£¨n-1£©}{2}=n$£¬
ÒòΪb1=1Âú×ã¸Ãʽ£¬ËùÒÔbn=n£¬¡­£¨6·Ö£©
£¨2£©ÓÉ£¨1£©¿ÉÖª${c_n}=\frac{b_n}{{{a_n}+1}}=\frac{n}{{{2^{n-1}}}}$£¬ËùÒÔ²»µÈʽ${T_n}¡Ým-\frac{9}{2^n}$£¬
¼´Îª$1+\frac{2}{2}+\frac{3}{2^2}+¡­+\frac{n}{{{2^{n-1}}}}¡Ým-\frac{9}{2^n}$£¬
Áî${R_n}=1+\frac{2}{2}+\frac{3}{2^2}+¡­+\frac{n}{{{2^{n-1}}}}$£¬Ôò$\frac{1}{2}{R_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+¡­+\frac{n}{2^n}$£¬
Á½Ê½Ïà¼õµÃ$£¨1-\frac{1}{2}£©{R_n}=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+¡­+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}=2-\frac{n+2}{2^n}$£¬
ËùÒÔ${R_n}=4-\frac{n+2}{{{2^{n-1}}}}$£¬¡­£¨8·Ö£©
ÓÉ${R_n}¡Ým-\frac{9}{2^n}$ºã³ÉÁ¢£¬¼´$4-\frac{2n-5}{2^n}¡Ým$ºã³ÉÁ¢£¬
ÓÖ$£¨4-\frac{2n-3}{{{2^{n+1}}}}£©-£¨4-\frac{2n-5}{2^n}£©=\frac{2n-7}{{{2^{n+1}}}}$£¬
¹Êµ±n¡Ü3ʱ£¬$\left\{{4-\frac{2n-5}{2^n}}\right\}$µ¥µ÷µÝ¼õ£»µ±n=3ʱ£¬$4-\frac{2¡Á3-5}{2^3}=\frac{31}{8}$£»
µ±n¡Ý4ʱ£¬$\left\{{4-\frac{2n-5}{2^n}}\right\}$µ¥µ÷µÝÔö£»µ±n=4ʱ£¬$4-\frac{2¡Á4-5}{2^4}=\frac{61}{16}$£»
Ôò$4-\frac{2n-5}{2^n}$µÄ×îСֵΪ$\frac{61}{16}$£¬
ËùÒÔʵÊýmµÄ×î´óÖµÊÇ$\frac{61}{16}$¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽÒÔ¼°ÊýÁÐÇóºÍµÄ·½·¨£¬ÊýÁÐÓë²»µÈʽµÄ×ÛºÏÓ¦Óã¬ÊýÁеĺ¯ÊýÌØÕ÷µÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâÓë½â¾öÎÊÌ⣬ת»¯Ë¼ÏëµÄÓ¦Óã¬ÄѶȱȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®º¯Êýy=2sin£¨2x+$\frac{¦Ð}{6}$£©+1µÄ×îСÕýÖÜÆÚÊǦУ¬×îСֵÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®2015Äê12ÔÂ7ÈÕ£¬±±¾©Ê×´ÎÆô¶¯¿ÕÆøÖØÎÛȾºìÉ«Ô¤¾¯£®ÆäÓ¦¼±´ëÊ©°üÀ¨£ºÈ«Êз¶Î§ÄÚ½«ÊµÊ©»ú¶¯³µµ¥Ë«ºÅÏÞÐУ¨¼´µ¥ÈÕÖ»Óе¥ºÅ³µ¿ÉÒÔÉÏ·ÐÐÊ»£¬Ë«ÈÕÖ»ÓÐË«ºÅ³µ¿ÉÒÔÉÏ·ÐÐÊ»£©£¬ÆäÖб±¾©µÄ¹«ÎñÓóµÔÚµ¥Ë«ºÅÐÐÊ»µÄ»ù´¡ÉÏ£¬ÔÙͣʻ³µÁ¿×ÜÊýµÄ30%£®ÏÖijµ¥Î»µÄ¹«Îñ³µ£¬Ö°¹¤µÄ˽¼Ò³µÊýÁ¿ÈçÏÂ±í£º
    ¹«Îñ³µ    Ë½¼Ò³µ
   µ¥ºÅ£¨Á¾£©     10    135
   Ë«ºÅ£¨Á¾£©     20    120
¸ù¾ÝÓ¦¼±´ëÊ©£¬12ÔÂ8ÈÕ£¬Õâ¸öµ¥Î»ÐèҪͣʻµÄ¹«Îñ³µºÍ˽¼Ò³µÒ»¹²ÓУ¨¡¡¡¡£©
A£®154 Á¾B£®149Á¾C£®145Á¾D£®140Á¾

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬OAÊÇÄϱ±·½ÏòµÄÒ»Ìõ¹«Â·£¬OBÊDZ±Æ«¶«45¡ã·½ÏòµÄÒ»Ìõ¹«Â·£¬Ä³·ç¾°ÇøµÄÒ»¶Î±ß½çΪÇúÏßC£®Îª·½±ãÓο͹⣬Äâ¹ýÇúÏßCÉϵÄijµã·Ö±ðÐÞ½¨Ó빫·OA£¬OB´¹Ö±µÄÁ½ÌõµÀ·PM£¬PN£¬ÇÒPM£¬PNµÄÔì¼Û·Ö±ðΪ5ÍòÔª/°ÙÃ×£¬40ÍòÔª/°ÙÃ×£¬½¨Á¢ÈçͼËùʾµÄÖ±½Ç×ø±êϵxoy£¬ÔòÇúÏß·ûºÏº¯Êýy=x+$\frac{{4\sqrt{2}}}{x^2}$£¨1¡Üx¡Ü9£©Ä£ÐÍ£¬ÉèPM=x£¬ÐÞ½¨Á½ÌõµÀ·PM£¬PNµÄ×ÜÔì¼ÛΪf£¨x£©ÍòÔª£¬ÌâÖÐËùÉæ¼°µÄ³¤¶Èµ¥Î»¾ùΪ°ÙÃ×£®
£¨1£©Çóf£¨x£©½âÎöʽ£»
£¨2£©µ±xΪ¶àÉÙʱ£¬×ÜÔì¼Ûf£¨x£©×îµÍ£¿²¢Çó³ö×îµÍÔì¼Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪa£¬ÔòÓУ¨¡¡¡¡£©
A£®$\overrightarrow{AB}$•$\overrightarrow{{A}_{1}{C}_{1}}$=a2B£®$\overrightarrow{A{C}_{1}}$•$\overrightarrow{B{D}_{1}}$=0C£®$\overrightarrow{AB}$•$\overrightarrow{A{C}_{1}}$=$\sqrt{2}$a2D£®$\overrightarrow{BC}$•$\overrightarrow{D{A}_{1}}$=a2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèf£¨x£©ÊǶ¨ÒåÓòRÉϵÄÔöº¯Êý£¬?x£¬y¡ÊR£¬f£¨x+y£©=f£¨x£©+f£¨y£©-1£¬ÇÒf£¨3£©=3£¬¼Çan=f£¨n£©£¨n¡ÊN*£©£¬ÔòÊýÁÐ{an}µÄÇ°nÏîºÍSn=$\frac{n£¨n+4£©}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôµãP£¨x0£¬y0£©ÔÚÔ²C£ºx2+y2=r2µÄÄÚ²¿£¬ÔòÖ±Ïßxx0+yy0=r2ÓëÔ²CµÄλÖùØϵÊÇ£¨¡¡¡¡£©
A£®ÏཻB£®ÏàÇÐC£®ÏàÀëD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺
¢Ùf£¨x£©ÊÇżº¯Êý£»
¢Úf£¨x-1£©ÊÇÆ溯Êý£»
¢Ûf£¨x£©=$\left\{\begin{array}{l}{0£¬x=0}\\{lnx£¬x¡Ê£¨0£¬1]}\end{array}\right.$£®
Ôò·½³Ìf£¨x£©+2=f£¨2£©ÔÚÇø¼ä£¨-2£¬10£©ÄÚµÄËùÓÐʵ¸ùÖ®ºÍΪ£¨¡¡¡¡£©
A£®22B£®24C£®26D£®28

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èô0£¼x£¼$\frac{3}{5}$£¬Ôòx£¨3-5x£©µÄ×î´óÖµÊÇ$\frac{9}{20}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸