·ÖÎö £¨1£©ÀûÓÃÒÑÖªÌõ¼þͨ¹ýµÈ±ÈÊýÁÐÇó½âͨÏʽ${a_n}={2^{n-1}}-1$£¬ÀûÓÃ$n{S_{n+1}}-£¨n+1£©{S_n}=\frac{1}{2}n£¨n+1£©$µÃ$\left\{{\frac{S_n}{n}}\right\}$ÊÇÒÔ$\frac{S_1}{1}=1$ΪÊ×Ï$\frac{1}{2}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬Çó³öSn£¬È»ºóÇó½â{bn}µÄͨÏʽ£®
£¨2£©»¯¼ò${c_n}=\frac{b_n}{{{a_n}+1}}=\frac{n}{{{2^{n-1}}}}$£¬ÀûÓôíλÏà¼õ·¨Çó³öTn£¬×ª»¯²»µÈʽΪ$4-\frac{2n-5}{2^n}¡Ým$ºã³ÉÁ¢£¬ÀûÓÃ×îÖµÇó½âʵÊýmµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÓÉa3=3£¬a6=31£¬µÃa3+1=4£¬a6+1=32£¬
ËùÒÔ${a_n}+1={2^{n-1}}$£¬¡à${a_n}={2^{n-1}}-1$£¬¡£¨2·Ö£©
ÓÉ$n{S_{n+1}}-£¨n+1£©{S_n}=\frac{1}{2}n£¨n+1£©$µÃ£¬$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$£¬
¹Ê$\left\{{\frac{S_n}{n}}\right\}$ÊÇÒÔ$\frac{S_1}{1}=1$ΪÊ×Ï$\frac{1}{2}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬
Ôò$\frac{S_n}{n}=1+\frac{1}{2}£¨n-1£©$£¬ËùÒÔ${S_n}=\frac{n£¨n+1£©}{2}$£¬¡£¨4·Ö£©
µ±n¡Ý2ʱ£¬${b_n}={S_n}-{S_{n-1}}=\frac{n£¨n+1£©}{2}-\frac{n£¨n-1£©}{2}=n$£¬
ÒòΪb1=1Âú×ã¸Ãʽ£¬ËùÒÔbn=n£¬¡£¨6·Ö£©
£¨2£©ÓÉ£¨1£©¿ÉÖª${c_n}=\frac{b_n}{{{a_n}+1}}=\frac{n}{{{2^{n-1}}}}$£¬ËùÒÔ²»µÈʽ${T_n}¡Ým-\frac{9}{2^n}$£¬
¼´Îª$1+\frac{2}{2}+\frac{3}{2^2}+¡+\frac{n}{{{2^{n-1}}}}¡Ým-\frac{9}{2^n}$£¬
Áî${R_n}=1+\frac{2}{2}+\frac{3}{2^2}+¡+\frac{n}{{{2^{n-1}}}}$£¬Ôò$\frac{1}{2}{R_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+¡+\frac{n}{2^n}$£¬
Á½Ê½Ïà¼õµÃ$£¨1-\frac{1}{2}£©{R_n}=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+¡+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}=2-\frac{n+2}{2^n}$£¬
ËùÒÔ${R_n}=4-\frac{n+2}{{{2^{n-1}}}}$£¬¡£¨8·Ö£©
ÓÉ${R_n}¡Ým-\frac{9}{2^n}$ºã³ÉÁ¢£¬¼´$4-\frac{2n-5}{2^n}¡Ým$ºã³ÉÁ¢£¬
ÓÖ$£¨4-\frac{2n-3}{{{2^{n+1}}}}£©-£¨4-\frac{2n-5}{2^n}£©=\frac{2n-7}{{{2^{n+1}}}}$£¬
¹Êµ±n¡Ü3ʱ£¬$\left\{{4-\frac{2n-5}{2^n}}\right\}$µ¥µ÷µÝ¼õ£»µ±n=3ʱ£¬$4-\frac{2¡Á3-5}{2^3}=\frac{31}{8}$£»
µ±n¡Ý4ʱ£¬$\left\{{4-\frac{2n-5}{2^n}}\right\}$µ¥µ÷µÝÔö£»µ±n=4ʱ£¬$4-\frac{2¡Á4-5}{2^4}=\frac{61}{16}$£»
Ôò$4-\frac{2n-5}{2^n}$µÄ×îСֵΪ$\frac{61}{16}$£¬
ËùÒÔʵÊýmµÄ×î´óÖµÊÇ$\frac{61}{16}$¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽÒÔ¼°ÊýÁÐÇóºÍµÄ·½·¨£¬ÊýÁÐÓë²»µÈʽµÄ×ÛºÏÓ¦Óã¬ÊýÁеĺ¯ÊýÌØÕ÷µÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâÓë½â¾öÎÊÌ⣬ת»¯Ë¼ÏëµÄÓ¦Óã¬ÄѶȱȽϴó£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
¹«Îñ³µ | ˽¼Ò³µ | |
µ¥ºÅ£¨Á¾£© | 10 | 135 |
Ë«ºÅ£¨Á¾£© | 20 | 120 |
A£® | 154 Á¾ | B£® | 149Á¾ | C£® | 145Á¾ | D£® | 140Á¾ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\overrightarrow{AB}$•$\overrightarrow{{A}_{1}{C}_{1}}$=a2 | B£® | $\overrightarrow{A{C}_{1}}$•$\overrightarrow{B{D}_{1}}$=0 | C£® | $\overrightarrow{AB}$•$\overrightarrow{A{C}_{1}}$=$\sqrt{2}$a2 | D£® | $\overrightarrow{BC}$•$\overrightarrow{D{A}_{1}}$=a2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Ïཻ | B£® | ÏàÇÐ | C£® | ÏàÀë | D£® | ÎÞ·¨È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 22 | B£® | 24 | C£® | 26 | D£® | 28 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com