【题目】阅读如图判断闰年的流程图,判断公元1900年、公元2000年、公元2018年、公元2020年这四年中闰年的个数为(nMODm为n除以m的余数)( )
A.1个B.2个
C.3个D.4个
科目:高中数学 来源: 题型:
【题目】某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).
(1)若该市计划让全市的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值;
(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的,试估计全市每月节约的电量;
(3)在(1)(2)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请解答以下问题,要求解决两个问题的方法不同.
(1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.
(2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为两非零有理数列(即对任意的,均为有理数),为一无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式.
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为.
(3)已知,,对任意的,恒成立,试计算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,圆心为坐标原点的单位圆O在C的内部,且与C有且仅有两个公共点,直线与C只有一个公共点.
(1)求C的标准方程;
(2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线l与C交于A,B两点,且弦AB的中垂线交x轴于点P,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,和均为正三角形,在三棱锥中:
(1)证明:平面平面;
(2)若是的中点,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com