精英家教网 > 高中数学 > 题目详情

【题目】阅读如图判断闰年的流程图,判断公元1900年、公元2000年、公元2018年、公元2020年这四年中闰年的个数为(nMODmn除以m的余数)(

A.1B.2

C.3D.4

【答案】B

【解析】

根据流程图进行计算,分析,判断可得答案.

按照程序框图进行运算:

,1900除以4的余数为0,,1900除以100的余数为0,, 1900除以400的余数为3,,1900年不是闰年;

,2000除以4的余数为0,,2000除以100的余数为0,,2000除以400的余数为0,,2000年是闰年;

,2018除以4的余数为2,, 2018年不是闰年;

,2020除以4的余数为0,,2020除以100的余数为2,,2020年是闰年,

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).

1)若该市计划让全市的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值

2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的,试估计全市每月节约的电量;

3)在(1)(2)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请解答以下问题,要求解决两个问题的方法不同.

1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为两非零有理数列(即对任意的均为有理数),为一无理数列(即对任意的为无理数).

1)已知,并且对任意的恒成立,试求的通项公式.

2)若为有理数列,试证明:对任意的恒成立的充要条件为

3)已知,对任意的恒成立,试计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,圆心为坐标原点的单位圆OC的内部,且与C有且仅有两个公共点,直线C只有一个公共点.

1)求C的标准方程;

2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线lC交于AB两点,且弦AB的中垂线交x轴于点P,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,的中点,是等边三角形,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,的中点,平面,且在矩形中,.

1)求证:

2)求证:平面

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

(Ⅱ) 证明: 当时, .

查看答案和解析>>

同步练习册答案