(本小题共13分)
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。
(Ⅰ)求证:
(Ⅱ) 求证:
(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。
(1)根据三角形的中位线,那么可以// ,然后结合线面平行的判定定理可知结论。
(2)结合已知中正方形的心智,以及,结合线面垂直的性质定理得到线线垂直。
(3)
解析试题分析:(Ⅰ) , 点E为的中点,连接。
的中位线// ……2分
又
……4分
(II) 正方形中,
由已知可得:, …….6分
, …….7分
…….8分
(Ⅲ)由题意可得:,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则,
9分
设
10分
设平面的法向量为
则
得 11分
取是平面的一个法向量,而平面的一个法向量为 12分
要使二面角的大小为
而
解得:
当=时,二面角的大小为 13分
考点:空间中的线面平行和线线垂直以及二面角的求解
点评:解决平行和垂直的证明,一般要用到判定定理和性质定理,然后结合空间向量法来求解二面角,属于基础题。
科目:高中数学 来源: 题型:解答题
如图所示在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB为等边三角形。(12分)
(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线AB与DE所成角的余弦值为,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com