【题目】已知四边形为等腰梯形, , 沿对角线将旋转,使得点至点的位置,此时满足.
(1)判断的形状,并证明;
(2)求二面角的平面角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:家占、朋友聚集的地方占、个人空间占.为了考察高中生的“恋家(在家里感到最幸福)”是否与国别有关,构建了如下列联表.
在家里最幸福 | 在其它场所幸福 | 合计 | |
中国高中生 | |||
美国高中生 | |||
合计 |
(Ⅰ)请将列联表补充完整;试判断能否有的把握认为“恋家”与否与国别有关;
(Ⅱ)从中国高中生的学生中以“是否恋家”为标准采用分层抽样的方法,随机抽取了5人,再从这5人中随机抽取2人.若所选2名学生中的“恋家”人数为,求随机变量的分布列及期望.
附: ,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列各项均为正数, , ,且对任意恒成立,记的前项和为.
(1)若,求的值;
(2)证明:对任意正实数, 成等比数列;
(3)是否存在正实数,使得数列为等比数列.若存在,求出此时和的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试.共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
测试后,随机抽取了 20名学生的答题数据进行统计,结果如下
(1)根据题中数据,估计这240名学生中第5题的实测答对人数;
(2)从抽取的20名学生中再随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;
(3)定义统计量,其中为第题的实测难度, 为第题的预估难度.规定:若,则称该次测试的难度预估合理,否则为不合理.试据此判断本次测试的难度预估是否合理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中)在点处的切线斜率为1.
(1)用表示;
(2)设,若对定义域内的恒成立,求实数的取值范围;
(3)在(2)的前提下,如果,证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com