精英家教网 > 高中数学 > 题目详情

已知点O在平面△ABC中,且满足(数学公式-数学公式2+(数学公式-数学公式2+(数学公式-数学公式2=0,则点O是△ABC的


  1. A.
    外心
  2. B.
    重心
  3. C.
    内心
  4. D.
    垂心
C
分析:作出如图的三角形,由于(-2+(-2+(-2=0,可以得出-=-=-=0,由此结合向量的数量积对已知条件变形即可得出结论.
解答:解:作出如图的图形,由于(-2+(-2+(-2=0,
-=-=-=0,
-=0时,
=
∴∠DAB=∠DAC,
∴O点在三角形的角A平分线上;
同理,O点在三角形的角B,角C平分线上;
故点定O的一定是△ABC的内心.
故选C.
点评:本题考点是三角形的五心,考查了五心中内心的几何特征以及向量的加法与数乘运算,解答本题的关键是理解向量加法的几何意义,从而确定点的几何位置.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=
1
3
DB
,点C为圆O上一点,且BC=
3
AC
.点P在圆O所在平面上的正投影为点D,PD=BD.
(Ⅰ)求证:CD⊥平面PAB;
(Ⅱ)求PD与平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆三模)已知点O在平面△ABC中,且满足(
OA
AB
|
AB
|
-
OA
AC
|
AC
|
2+(
OB
BA
|B
.
A
|
-
OB
• 
BC
|B
.
C
|
2+(
OC
CA
|CA|
-
OC
CB
|
CB
|
2=0,则点O是△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=
1
3
DB
,点C为圆O上一点,且BC=
3
AC
.点P在圆O所在平面上的正投影为点D,PD=BD.
(1)求证:CD⊥平面PAB;
(2)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:山东省济宁市金乡二中2011-2012学年高二下学期期中考试数学理试题 题型:022

给出下列命题:

①某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有60种;

②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,(x)>0,>0,则x<0时,(x)>(x);

③已知点M在平面ABC内,并且对空间任一点O,=x,则的值为1;

④在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC的距离为,其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:四川省南山中学2011-2012学年高二下学期期中考试数学理科试题 题型:022

给出下列命题:

①某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有60种;

②对于任意实数x,有f(-x)=-f(x),g(-x),且x>0时,(x)>0,(x)>0,则x<0时,(x)>(x);

③已知点M在平面ABC内,并且对空间任一点O,=x,则x的值为1;

④在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC的距离为,其中正确命题的序号是________

查看答案和解析>>

同步练习册答案