精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的方程为

(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程和直线的极坐标方程;

(2)在(1)的条件下,直线的极坐标方程为,设曲线与直线的交于点和点,曲线与直线的交于点和点,求的面积.

【答案】(1)极坐标方程为:.直线的极坐标方程为:.(2)

【解析】

1)消去参数φ可得曲线C的直角坐标方程,再根据互化公式可得曲线C的极坐标方程;根据互化公式可得直线l的极坐标方程;(2)根据极径的几何意义和面积公式可得.

(1)由

得曲线C的普通方程为

代入该式化简得曲线C的极坐标方程为:.

因为直线是过原点且倾斜角为的直线,

所以直线的极坐标方程为:

(2)把代入,故

代入,故

因为,

所以的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点,母线长为的圆锥中,底面圆的直径长为2是圆所在平面内一点,且是圆的切线,连接交圆于点,连接.

1)求证:平面平面

2)若的中点,连接,当二面角的大小为时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?

2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?

3)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?

4)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为了测量某湿地两点间的距离,观察者找到在同一直线上的三点.从点测得,从点测得,从点测得.若测得(单位:百米),则两点的距离为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥每个顶点都在球的球面上,球心在正三棱锥的内部.球的半径为,且.若过作球的截面,所得圆周长的最大值是,则该三棱锥的侧面积为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,到如图所示的频率分布直方图.

1)求图中的值及样本的中位数与众数;

2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数满足,则的最大值为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)求证:函数

2)某同学由(1)又发现是周期函数且是偶函数,于是他得出两个命题:①集合中的元素都是周期函数;②集合中的元素都是偶函数,请对这两个命题给出判断,如果正确,请证明;如果不正确,请举出反例;

3)设为非零常数,求的充要条件,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直线2x+y+4=0和圆x2+y2+2x4y+1=0的交点,且面积最小的圆方程为(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

同步练习册答案