精英家教网 > 高中数学 > 题目详情
过原点向曲线y=x3+2x2+a可作三条切线,则实数a的取值范围是______.
设切点坐标为(x0,x03+2x02+a),而切线的斜率k=y′=3x02+4x0
所以切线方程为:y-(x03+2x02+a)=(3x02+4x0)(x-x0),
把原点(0,0)代入得:2x03+2x02-a,
所以过原点向曲线y=x3+2x2+a可作三条切线,方程2x03+2x02-a=0有三个不同的实数解,
设h(x)=2x3+2x2-a,所以令h′(x)=6x2+4x=2x(3x+2)=0,解得x=0或x=-
2
3

则x,h′(x),h(x)的变化如下图:
x (-∞,-
2
3
-
2
3
(-
2
3
,0)
0 (0,+∞)
h'(x) + 0 - 0 +
h(x) 极大值 极小值
根据图形可知:h(x)极大值=h(-
2
3
)=
8
27
-a,h(x)极小值=h(0)=-a,
根据题意
h(-
2
3
)>0
h(0)<0
,即
8
27
-a>0
-a<0
,解得:0<a<
8
27

则实数a的取值范围是(0,
8
27
).
故答案为:(0,
8
27
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过原点向曲线y=x3+2x2+a可作三条切线,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•汕头二模)定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(Ⅲ)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义F(x,y)=(1+x)y,x,y∈(0,+∞).
(Ⅰ)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),求点B的坐标;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(Ⅲ)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

过原点向曲线y=x3+2x2+a可作三条切线,则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案