精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为线段CD中点.
(1)求直线B1E与直线AD1所成的角的余弦值;
(2)若AB=2,求二面角A-B1E-
A_
1
的大小;
(3)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(1)分别以AB,AD,AA1为x轴、y轴、z轴建立空间直角坐标系,设AB=a则A(0,0,0),D(0,1,0),D1(0,1,1),E(
a
2
,1,0),B1(a,0,1),
AD1
=(0,1,1),
B1E
=(-
a
2
,1,-1),
AB1
=(a,0,1),
AE
=(
a
2
,1,0),
AD1
B1E
=1-1=0
∴B1E⊥AD1
∴直线B1E与直线AD1所成的角的余弦值为0;
(2)连接A1D,B1C,由长方体ABCD-A1B1C1D1及AA1=AD=1,得AD1⊥A1D.
∵B1CA1D,∴AD1⊥B1C.
由(1)知,B1E⊥AD1,且B1C∩B1E=B1
∴AD1⊥平面DCB1A1
AD1
是平面A1B1E的一个法向量,此时
AD1
=(0,1,1)
AB=2,设平面B1AE的法向量
n
=(x,y,z)
,则
AB1
=(2,0,1),
AE
=(1,1,0)
n
平面B1AE,∴
n
AB1
n
AE

2x+z=0
x+y=0

取x=1,使得平面B1AE的一个法向量
n
=(1,-1,2),
AD1
n
所成的角为θ,则
cosθ=
AD1
n
|
AD1
||
n
|
=-
3
2

∴二面角A-B1E-A1的大小为30°;
(3)假设在棱AA1上存在一点P(0,0,z0)使得DP平面B1AE.此时
DP
=(0,-1,z0)

又设AB的长度为a,平面B1AE的法向量
n
=(x,y,z)
,则
AB1
=(a,0,1),
AE
=(
a
2
,1,0)

n
平面B1AE∴
n
AB1
n
AE
ax+z=0
ax
2
+y=0

取x=1,使得平面B1AE的一个法向量
n
=(1,
-a
2
,-a)

要使DP平面B1AE,只要
n
DP
,有
a
2
-az0=0
,解得z0=
1
2

又DP?平面B1AE,∴存在点P,满足DP平面B1AE,此时AP=
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角的余弦值;(Ⅲ)求面AMC与面BMC所成二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:PD⊥平面ABE;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AA1=AD=2,点E在棱CD上,且CE=
1
3
CD

(1)求证:AD1⊥平面A1B1D;
(2)在棱AA1上是否存在点P,使DP平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由;
(3)若二面角A-B1E-A1的余弦值为
30
6
,求棱AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是梯形,ADBC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求异面直线PC与AB所成角的余弦值;
(Ⅲ)在侧棱PA上是否存在一点E,使得平面CDE与平面ADC所成角的余弦值是
2
3
,若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M为PA中点,求证:AC平面MDE;
(2)求平面PAD与PBC所成锐二面角的大小(理);
求二面角P-AC-D的正切值的大小(文).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
3
,∠ABC=
π
3

(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标中,的三个顶点A、B、C,下列命题正确的个数是(  )
(1)平面内点G满足,则G是的重心;(2)平面内点M满足,点M是的内心;(3)平面内点P满足,则点P在边BC的垂线上;
A.0             B.1               C.2              D.3

查看答案和解析>>

同步练习册答案