精英家教网 > 高中数学 > 题目详情

【题目】椭圆的焦距是,长轴长是短轴长3倍,任作斜率为的直线与椭圆交于两点(如图所示),且点在直线的左上方.

1)求椭圆的方程;

2)若,求的面积;

3)证明:的内切圆的圆心在一条定直线上。

【答案】1

2

3的内切圆的圆心在一条定直线

【解析】

1)由题意求出椭圆方程中的,得解;

2)分别利用弦长公式及点到直线的距离公式求出三角形的底与高,再利用三角形面积公式求解即可;

3)先证明,从而可得的角平分线平行轴,从而可证的内切圆的圆心在一条定直线上.

解:(1)由题意知:,得,又

所以

故椭圆的方程为:

2)设直线的方程为:,代入椭圆方程可得:

,

所以

,解得

由题意可得

所在直线方程为,即

所以点到直线的距离

的面积为

3)设直线的方程为:,代入椭圆方程可得:

,

所以=

,所以的角平分线平行轴,

的内切圆的圆心在一条定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xa||x5|.

1)当a=2时,求证:﹣3≤f(x)≤3

2)若关于x的不等式f(x)≤x28x+20R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆相外切,且与直线相切.

1)记圆心的轨迹为曲线,求的方程;

2)过点的两条直线与曲线分别相交于点,线段的中点分别为.如果直线的斜率之积等于1,求证:直线经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,为边的中点,将沿直线翻折成,设为线段的中点.则在翻折过程中,给出如下结论:

①当不在平面内时,平面

②存在某个位置,使得

③线段的长是定值;

④当三棱锥体积最大时,其外接球的表面积为

其中,所有正确结论的序号是______.(请将所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】与定点的距离和它到直线的距离的比是常数

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过坐标原点的直线交轨迹两点,轨迹上异于的点满足直线的斜率为

(ⅰ)证明:直线的斜率之积为定值;

(ⅱ)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:

1)根据以上提供的信息,完成列联表,并完善等高条形图;

选物理

不选物理

总计

数学成绩优秀

数学成绩不优秀

260

总计

600

1000

2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?

附:

临界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为坐标原点,动点在圆上,过轴的垂线,垂足为,点满足

1)求点的轨迹的方程;

2)直线上的点满足.过点作直线垂直于线段于点

(ⅰ)证明:恒过定点;

(ⅱ)设线段于点,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为助力湖北新冠疫情后的经济复苏,某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:

单价(元/件)

8

8.2

8.4

8.6

8.8

9

销量(万件)

90

84

83

80

75

68

1)根据以上数据,求关于的线性回归方程;

2)若该产品成本是4/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?

(参考公式:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的单调区间和极值;

(2)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

同步练习册答案