精英家教网 > 高中数学 > 题目详情

【题目】为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮到这种动物1200只作好标记后放回,经过一星期后,又逮到这种动物1000只,其中作过标记的有100只,按概率的方法估算,保护区内有多少只该种动物.

【答案】保扩区内约有12000只该种动物.

【解析】

本题是由样本来估计总体,逮到的样本中标记的频率为,之前一个标记了只,从而可以估计出动物的总数.

解:设保护区内这种野生动物有只,假定每只动物被逮到的可能性是相同的,那么从这种野生动物中任逮一只,设事件A={带有记号的动物},则由古典概型可知,.第二次被逮到的1000只中,有100只带有记号,即事件A发生的频数,由概率的统计定义可知,故,解得.

所以,保扩区内约有12000只该种动物.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上是增函数,且在定义域上是偶函数.

1)求p的值,并写出相应的函数的解析式.

2)对于(1)中求得的函数,设函数,问是否存在实数,使得在区间上是减函数,且在区间上是增函数?若存在,请求出q;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着小汽车的普及,“驾驶证”已经成为现代人“必考”证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,需要通过四个科目的考试,其中科目二为场地考试在每一次报名中,每个学员有次参加科目二考试的机会(这次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试,或次都没有通过,则需要重新报名),其中前次参加科目二考试免费,若前次都没有通过,则以后每次参加科目二考试都需要交元的补考费.某驾校通过几年的资料统计,得到如下结论:男性学员参加科目二考试,每次通过的概率均为,女性学员参加科目二考试,每次通过的概率均为.现有一对夫妻同时报名参加驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.

1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;

2)求这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).

1)把利润表示为年产量的函数;

2)年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知抛物线和圆的公共弦过抛物线的焦点,且弦长为4.

(1)求抛物线和圆的方程;

(2)过点的直线与抛物线相交于两点抛物线在点处的切线与轴的交点为,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C:的离心率为,并且椭圆经过点P(1,),直线l的方程为x=4.

(1)求椭圆的方程;

(2)已知椭圆内一点E(1,0),过点E作一条斜率为k的直线与椭圆交于A,B两点,交直线l于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1+k2k3?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列判断正确的是( )

A. 有最大值和最小值

B. 的图象的对称中心为

C. 上存在单调递减区间

D. 的图象可由的图象向左平移个单位而得

查看答案和解析>>

同步练习册答案