精英家教网 > 高中数学 > 题目详情

 

已知函数f (x) = loga x (a > 0且a≠1),若数列:2,f (a1),f (a2),…,f (an),2n + 4 (n∈N)为等差数列.

(1) 求数列{an}的通项公式an

(2) 若a = 2,bn = an·f (an),求数列{bn}前n项和Sn

(3) 在(2)的条件下对任意的n∈N,都有bn > f - 1(t),求实数t的取值范围.

 

 

 

 

 

 

【答案】

 

解:(1) 由2n+4=2+(n+)d求得:d = 2,所以f (an)=2+(n+)·2 = 2n+2,求得:an=.                                      (4分)

(2) bn= an·f (an)= (2n+2)=(n+1)· 

Sn=2·25+3·27 +4·29 +…+(n+1)·, 错位相减得:

Sn=                                    (8分)

    (3) ∵·4 > 1,∴{ bn }为递增数列. bn中的最小项为:b1=2·25=26                     (14分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案