【题目】已知函数.
(1)设,(其中是的导数),求的最小值;
(2)设,若有零点,求的取值范围.
【答案】(1) (2)
【解析】
(1)求导数,得,对再求导,由导数单调性得最小值;
(2)由(1)知,因此在时,无零点,在时把函数整理为的函数:,因,,故是的减函数,再分类讨论,,
,令,利用导数知识说明函数无零点,有一个零点,时,用零点存在定理说明函数有零点.为此只要证明,即可.
解:(1),,定义域为
,时,,单减;时,,单增
.
(2)①故当时,由(1)知,故单增,当时,;当时,,,故;而,故时,,此时无解;
,因,,故是的减函数
②当时,,
令,显然,,
,函数单调递增
又,故时,,单减;时,,单增,故,,此时无解;
③当时,,此时,即有零点;
④当时,,令有,下证存在使得,
,令,
令,则
,而,只需
记,单增,,故单增
,故存在,使得,由前,故在有解.
综上所述,当时,有零点
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax,a∈R.
(1)若f(x)有两个零点,求a的取值范围;
(2)设函数g(x),证明:g(x)有极大值,且极大值小于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)的周期为,图象的一个对称中心为,将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数的图象.
(1)求函数与的解析式;
(2)求证:存在,使得,,能按照某种顺序成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的左,右焦点分别为,,点P为双曲线C右支上异于顶点的一点,的内切圆与x轴切于点,则a的值为______,若直线经过线段的中点且垂直于线段,则双曲线C的方程为________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边或边上.设,矩形的面积为.
(1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;
(2)试问如何截取(即取何值时),可使得到的矩形的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华文化博大精深,源远流长,每年都有大批外国游客入境观光旅游或者学习等,下面是年至年三个不同年龄段外国入境游客数量的柱状图:
下面说法错误的是:( )
A.年至年外国入境游客中,岁年龄段人数明显较多
B.年以来,三个年龄段的外国入境游客数量都在逐年增加
C.年以来,岁外国入境游客增加数量大于岁外国入境游客增加数量
D.年,岁外国入境游客增长率大于岁外国入境游客增长率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点O,焦点在x轴上,椭圆的两焦点与椭圆短轴的一个端点构成等边三角形,右焦点到右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)是否存在与椭圆C交于A,B两点的直线l:,使得成立?若存在,求出实数m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设和是双曲线上的两点,线段的中点为,直线不经过坐标原点.
(1)若直线和直线的斜率都存在且分别为和,求证:;
(2)若双曲线的焦点分别为、,点的坐标为,直线的斜率为,求由四点、、、所围成四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com