A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{1+\sqrt{13}}{2}$ |
分析 根据题设条件,利用余弦定理能够求出|PF1|=$\frac{\sqrt{13}-1}{3}$c,再由双曲线定义可以推导出2a=$\frac{\sqrt{13}-1}{3}$c,从而求出该双曲线的离心率.
解答 解:设|PF1|=x,|PF2|=2x,|F1F2|=2c,
∵∠PF1F2=60°,
∴cos60°=$\frac{{x}^{2}+4{c}^{2}-4{x}^{2}}{2•x•2c}$=$\frac{1}{2}$⇒x=$\frac{\sqrt{13}-1}{3}$c,
∵|PF2|-|PF1|=2a,
∴x=2a=$\frac{\sqrt{13}-1}{3}$c,
∴e=$\frac{c}{a}$=$\frac{1+\sqrt{13}}{2}$.
故选:D.
点评 本题主要考查双曲线的定义和基本性质,主要是双曲线的离心率,借助余弦定理解决圆锥曲线问题是解决高考试题的一种常规方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com