精英家教网 > 高中数学 > 题目详情
17.设n,k∈N*,且2≤k≤n,则${P}_{n}^{k}$-k${P}_{n-1}^{k-1}$=$\frac{(n-1)!•(n{-k}^{2})}{k!}$.

分析 根据排列数的公式进行化简计算即可.

解答 解:∵n,k∈N*,且2≤k≤n,
∴${P}_{n}^{k}$-k${P}_{n-1}^{k-1}$=$\frac{n!}{k!}$-k•$\frac{(n-1)!}{(k-1)!}$
=$\frac{n!}{k!}$-k2•$\frac{(n-1)!}{k!}$
=$\frac{(n-1)!•(n{-k}^{2})}{k!}$.
故答案为:$\frac{(n-1)!•(n{-k}^{2})}{k!}$.

点评 本题考查了排列数公式的应用问题,也考查了计算能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=log2(x-$\frac{1}{x}$),x∈[a,+∞)的值域为[0,+∞),则实数a的值为$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列结论正确的是(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$
B.“若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ≠$\frac{1}{2}$”
C.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$$•\overrightarrow{b}$<0”
D.若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A、B、C所对的边为a、b、c,且A=120°,b=5,c=6,则a=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面α,β的法向量分别是(-2,3,m),(4,λ,0),若α∥β,则λ+m的值(  )
A.8B.6C.-10D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$的方向和长度如图所示,分别求它们的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sinxcosx+1.
(1)求f($\frac{π}{4}$)的值及f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A1、A2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左右顶点,双曲线C的焦距为2c,P为右支上异于A2的一点,直线PA2与直线x=$\frac{{a}^{2}}{c}$相交于点Q,若$\overrightarrow{{A}_{1}P}$•$\overrightarrow{{A}_{1}Q}$=0,则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设曲线y=ex+$\frac{1}{2}$ax在点(0,1)处的切线与直线x+2y-1=0垂直,则实数a=(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案