精英家教网 > 高中数学 > 题目详情
设△ABC的内角ABC所对的边长分别为abc,且
(1)求角A的大小;
(2)若角边上的中线AM的长为,求△ABC的面积.
(1);(2).

试题分析:(1)本题考查解三角形的知识,问题是求角,因此我们一般把已知条件中边转化为角,如果等式两边边的关系是齐次的,那么我们可以应用正弦定理转化为角,本题中已知条件
,就可转化为,下面只要利用三角公式进行变形就能求出;(2)的角已经求出,但要求面积还必须至少知道两边,我们要由中线来求边,观察三角形,会发现在中,,由此用余弦定理可求得的长,下面就可求面积了.
试题解析:(1)∵,
     2分
.
   4分
    6分
(2)由(1)知,所以
,则,又         9分
中,由余弦定理得
,解得
             12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.
(1)求证:a,b,c成等差数列;(2)若C=,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,角所对的边分别为
向量),且.
(1)求角的大小;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,内角的对边分别为,且
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若△ABC面积为,c=2,A=60º,求a,b的值;
(2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在锐角△ABC中,角A,B,C的对边分别为,若,则△ABC的面积等于__________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,已知=,=2,B=45°,则角A=( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若某人在点A测得金字塔顶端仰角为30°,此人往金字塔方向走了80米到达点B,测得金字塔顶端的仰角为45°,则金字塔的高度最接近于(忽略人的身高)(参考数据)
A.110米B.112米C.220米D.224米

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,,则( )
A.B.C.D.

查看答案和解析>>

同步练习册答案