精英家教网 > 高中数学 > 题目详情

【题目】4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.

1)共有多少种不同的排法?

2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)

【答案】1)共有14400种不同的排列法.(2)选出的2名男同学不相邻,共有8640种不同的排法

【解析】

1)从名男生中选出人,有种方法,从名女生中选出人,有种方法,根据分步计数原理,选出人共有种方法.然后将选出的名学生进行排列,于是,所求的排法种数是

故所求的排法种数为…………………………………….5

2)在选出的人中,若名男生不相邻,则第一步先排名女生,有种排法,第二步让男生插空,有种排法,因此所求的排法种数是

故选出的人中,名男同学不相邻共有种排法. ……………………….12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:的右焦点为点的坐标为为坐标原点,是等腰直角三角形.

(1)求椭圆的方程;

(2)经过点作直线交椭圆两点,求面积的最大值;

(3)是否存在直线交椭圆于两点,使点的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项都是1的两个数列{},{}(≠0,n∈N*)满足

(1)令,求数列{}的通项公式;

(2)若,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件的最小值为7,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求函数的单调区间;

2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知参赛号码为1~4号的四名射箭运动员参加射箭比赛。

(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;

(2)记1号,2号射箭运动员,射箭的环数为所有取值为0,1,2,3...,10)。

根据教练员提供的资料,其概率分布如下表:

0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0.06

0.04

0.06

0.3

0.2

0.3

0.04

0

0

0

0

0.04

0.05

0.05

0.2

0.32

0.32

0.02

  1. 若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;
  2. 判断1号,2号射箭运动员谁射箭的水平高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.65.0之间的学生数为b,则ab的值分别为 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数6个零点,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为:.

1)求直线和曲线的直角坐标方程;

2,直线和曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案