精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为分别是椭圆的左、右焦点,直线过点与椭圆交于两点,且的周长为.

1)求椭圆的标准方程;

2)是否存在直线使的面积为?若存在,求出直线的方程;若不存在,请说明理由.

【答案】1 2)存在,直线的方程为.

【解析】

1)根据离心率公式、椭圆定义,结合椭圆性质,解方程组即可求出椭圆方程;

2)分两种情况讨论,当斜率不存在时,其面积为,不符题意,当斜率存在时,可设出直线方程,代入椭圆方程可得,结合韦达定理代入三角形面积公式,即可得解.

解:(1)由题意得

故椭圆的标准方程为.

2)存在直线满足题意,由(1)知右焦点

当直线的斜率不存在时,此时

,不符合题意,

故设直线的方程为,设

联立方程组消去.

,∴

,∴,∴(舍去),

,故直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面四边形ABCD,,将沿BD翻折到与面BCD垂直的位置.

证明:面ABC;

若E为AD中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)xlnxx

1)设g(x)f (x)|xa|aRe为自然对数的底数.

①当时,判断函数g(x)零点的个数;

时,求函数g(x)的最小值.

2)设0mn1,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数),上的最大值为.

(1)求实数的值;

(2)判断函数内的极值点个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义域为R的奇函数,且满足fx2)=fx+2),当x02)时,fx)=lnx2x+1),则方程fx)=0在区间[08]上的解的个数是(  )

A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,,,,,点上,且,将沿折起,使得平面平面 (如图), 中点.

(1)求证: 平面;

(2)在线段上是否存在点,使得平面?若存在,求的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.

(1)求抛物线C2的标准方程;

(2)过(10)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求ff1)),ff1));

2)画出fx)的图象;

3)若fx=a,问a为何值时,方程没有根?有一个根?两个根?

查看答案和解析>>

同步练习册答案