(本小题满分12分)如图中,已知点在边上,满足,,,.
(1)求的长;
(2)求.
(1);(2)
解析试题分析:本题主要考查解三角形中正弦定理和余弦向量的应用以及平面向量垂直的充要条件、平方关系、诱导公式等三角公式的应用,考查基本的运算能力和分析问题解决问题的能力.第一问,由于两向量的数量积为0,所以两向量垂直,从而转化角,利用诱导公式化简,利用已知条件和余弦定理列出表达式,解出的长;第二问,先利用正弦定理在中解出的值,再利用,用诱导公式转化,求角.
试题解析:(1) 因为,所以,
即, 2分
在中,由余弦定理可知,
即,
解之得或 6分
由于,所以 .7分
(2) 在中,由正弦定理可知,
又由可知,
所以,
因为,
所以 .12分
考点:1.向量垂直的充要条件;2.诱导公式;3.余弦定理;4.正弦定理;5.平方关系.
科目:高中数学 来源: 题型:解答题
钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.
(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com