精英家教网 > 高中数学 > 题目详情
20.点P是抛物线y2=4x上一动点,则点P到点(0,-1)的距离与抛物线准线的距离之和最小时,P的坐标是(3-2$\sqrt{2}$,2-2$\sqrt{2}$).

分析 先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PA|≥|AF|,再求出直线AF的方程为x-y-1=0,与抛物线y2=4x联立,即可得出结论.

解答 解:依题设P在抛物线准线的投影为P',抛物线的焦点为F,A(0,-1).
则F(1,0),
依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,
则点P到点A(0,-1)的距离与P到该抛物线准线的距离之和,
d=|PF|+|PA|≥|AF|=$\sqrt{2}$.
直线AF的方程为x-y-1=0,与抛物线y2=4x联立可得y2-4y-4=0,
y=2±2$\sqrt{2}$,结合题意,可得P(3-2$\sqrt{2}$,2-2$\sqrt{2}$).
故答案为(3-2$\sqrt{2}$,2-2$\sqrt{2}$).

点评 本题考查抛物线的定义,考查求距离和,解题的关键是点P到点(0,-1)的距离与P到该抛物线准线的距离之和转化为点P到点(0,-1)的距离与P到焦点F的距离之和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ mx-y≤0\end{array}\right.$若2x-y的最大值是2,则约束条件表示的平面区域面积为(  )
A.$\frac{8}{15}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a∈R,函数f(x)═log2($\frac{1}{x}$+a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)-log2[(a-4)x+2a-5],讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知p:函数f(x)=lg(x2-2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要从165名学生中抽取15人进行视力检查,现采用分层抽样法进行抽取,若这165名同学中,高中生为66人,则高中生中被抽取参加视力检查的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在面积为S的△ABC的边AB含任取一点P,则△PBC的面积大于$\frac{S}{4}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左焦点为F1,对定点M(6,4),若P为椭圆上一点,则|PF1|+|PM|的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.阅读下面的程序框图,运行相应的程序,输出S的值为105

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设α∈(0,$\frac{π}{3}$),满足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

查看答案和解析>>

同步练习册答案