精英家教网 > 高中数学 > 题目详情

【题目】正三棱柱的底边长为2, 分别为的中点.

(1)已知为线段上的点,且,求证:

(2)若二面角的余弦值为,求的值.

【答案】(1)见解析;(2).

【解析】试题分析:(I)取B1A1中点为N,连结BN,推导出BNA1F,从而EMBN,进而EMA1F,由此能证明EM∥面A1FC.
(II)以F为坐标原点建立空间直角坐标系,设AA1=a,利用向量法能求出结果.

试题解析:

证明:(1)中点为N,连结BN

BNF,=4M

EMBN,所以EMF

因为EMFC, FFC

EM∥面FC.

(2)如图,F为坐标原点建立空间直角坐标系,A=a.

F(0,0,0), (1,0,a),E(1,0,a2),C(0, ,0),

(1, ,), (0, ,0), (2,0, ), (1, ,a),

设平面CF法向量为

设平面EF法向量为

,z=1,=(a,0,1),

,x=1,=(a, a,4);

设二面角ECF的平面角为θ

∵二面角ECF所成角的余弦值为

所以

解得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆上, 的坐标分别为 ,线段的垂直平分线交线段于点

1)求点的轨迹的方程;

2)设圆与点的轨迹交于不同的四个点,求四边形的面积的最大值及相应的四个点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标
xyz

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标
xyz

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的样本数据估计该批产品的一等品率.
(2)在该样品的一等品中,随机抽取2件产品, ①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的定义域是[0,4],则函数g(x)= 的定义域是(
A.[0,2]
B.[0,2)
C.[0,1)∪(1,2]
D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床位每天的租金)不超过10元时,床位可以全部租出;当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入):
(1)把y表示成x的函数;
(2)试确定,该宾馆将床价定为多少元时,既符合上面的两个条件,又能使净收入高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与喜欢数学课程之间的关系,在某学校高中生中随机抽取了250名学生,得到如图的二维条形图.

(1)根据二维条形图,完成下表:

合计

喜欢数学课程

不喜欢数学课程

合计


(2)对照如表,利用列联表的独立性检验估计,请问有多大把握认为“性别与喜欢数学有关系”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

同步练习册答案