精英家教网 > 高中数学 > 题目详情
18.已知a>0,不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,可推广为$x+\frac{a}{x^n}≥n+1$,则a=nn

分析 由已知中不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,归纳不等式两边各项的变化规律,可得答案.

解答 解:由已知中不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,
归纳可得:不等式左边第一项为x.第二项为$\frac{{n}^{n}}{{x}^{n}}$,右边为n+1,
故第n个不等式为:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,
∴a=nn
故答案为nn

点评 本题考查了归纳推理,根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足:a1=2,且a22=a1a5
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知平面直角坐标系xoy内两个定点A(1,0)、B(4,0),满足PB=2PA的点P(x,y)形成的曲线记为Γ.
(1)求曲线Γ的方程;
(2)过点B的直线l与曲线Γ相交于C、D两点,当△COD的面积最大时,求直线l的方程(O为坐标原点);
(3)设曲线Γ分别交x、y轴的正半轴于M、N两点,点Q是曲线Γ位于第三象限内一段上的任意一点,连结QN交x轴于点E、连结QM交y轴于F.求证四边形MNEF的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=2x-lnx的单调递减区间为(  )
A.$({-∞,\frac{1}{2}})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})$D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.
(Ⅰ)计算渔政船C与渔港O的距离;
(Ⅱ)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?
(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00,$\sqrt{11}$≈3.62,$\sqrt{13}$≈3.61)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同的实数根,则实数a的取值范围是(  )
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义a⊕b=max{a,b},如:3⊕2=3,2⊕2=2,设$f(x)=({x^2}-\frac{15}{4})⊕({2^x})$,则函数f(x)的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个函数中,在(0,+∞)上是增函数的是(  )
A.f(x)=-$\frac{1}{x+1}$B.f(x)=x2-3xC.f(x)=3-xD.f (x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)在定义域内满足:
(1)对于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正数M,使得|f(x)|≤M,则称函数f(x)为“单通道函数”,给出以下4个函数:
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“单通道函数”有①③④.

查看答案和解析>>

同步练习册答案