【题目】若函数f(x)=a(x﹣2)ex+lnx+ 在(0,2)上存在两个极值点,则a的取值范围为( )
A.(﹣∞,﹣ )
B.(﹣ , )∪(1,+∞)
C.(﹣∞,﹣ )
D.(﹣∞,﹣ )∪(﹣﹣ ,﹣ )
【答案】D
【解析】解:函数f(x)=a(x﹣2)ex+lnx+ 在(0,2)上存在两个极值点, 等价于f′(x)=a(x﹣1)ex+ ﹣ 在(0,2)上有两个零点,
令f′(x)=0,则a(x﹣1)ex+ =0,
即(x﹣1)(aex+ )=0,
∴x﹣1=0或aex+ =0,
∴x=1满足条件,且aex+ =0(其中x≠1且x∈(0,2));
∴a=﹣ ,其中x∈(0,1)∪(1,2);
设t(x)=exx2 , 其中x∈(0,1)∪(1,2);
则t′(x)=(x2+2x)ex>0,
∴函数t(x)是单调增函数,
∴t(x)∈(0,e)∪(e,4e2),
∴a∈(﹣∞,﹣ )∪(﹣ ,﹣ ).
故选:D.
【考点精析】认真审题,首先需要了解函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值).
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与抛物线相交于、两点.
(1)求证:“如果直线过点,那么”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,则a与b的夹角为( )
A. B. C. D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M(m,0)(m> )做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P( ,0),且 为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据.
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)试根据(1)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某种农作物在特定温度下(要求最高温度满足:)的生长状况,某农学家需要在十月份去某地进行为期十天的连续观察试验.现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:)的记录如下:
(Ⅰ)根据本次试验目的和试验周期,写出农学家观察试验的起始日期.
(Ⅱ)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为,估计的大小?(直接写出结论即可).
(Ⅲ)从10月份31天中随机选择连续三天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com