(本题满分16分)
已知函数,,其中是的导函数.
(1)对满足的一切的值,都有,求实数的取值范围;
(2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.
(1)时,对满足的一切的值,都有;(2).
【解析】第一问由题意,得
设,.
对中任意值,恒有,即,
即
第二问,
①当时,的图象与直线只有一个公共点
②当时利用导数与函数直线的关系得到单调性的判定和最值。
解:(1)由题意,得,----------------------2分
设,.
对中任意值,恒有,即,
即 ----------------------6分
解得.
故时,对满足的一切的值,都有;----------------------7分
(2),
①当时,的图象与直线只有一个公共点;----------------------8分
②当时,列表:
极大值 |
最小值 |
,
又的值域是,且在上单调递增,
当时,函数的图象与直线只有一个公共点.----------------11分
当时,恒有,
由题意,只要,即有函数的图象与直线只有一个公共点
即, ---------------------------14分
解得.
综上,的取值范围是. ---------------------------16分
科目:高中数学 来源: 题型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数(,、是常数,且),对定义域内任意(、且),恒有成立.
(1)求函数的解析式,并写出函数的定义域;
(2)求的取值范围,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)已知数列的前项和为,且.数列中,,
.(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②.
查看答案和解析>>
科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)
已知函数
(1)判断并证明在上的单调性;
(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;
(3)若在上恒成立 , 求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com