精英家教网 > 高中数学 > 题目详情
1.已知a,b,c分别是△ABC内角A,B,C的对边sin2B=2sinAsinC,a=b
(1)求cosA
(2)若a=$\sqrt{2}$,求△ABC的面积.

分析 (1)由sin2B=2sinAsinC,根据正弦定理可得:b2=2ac,a=b,利用余弦定理可求cosA的值.
(2)a=$\sqrt{2}$,根据(1)可得b,c的值和sinA的值,根据${S}_{△ABC}=\frac{1}{2}bcsinA$可得结论.

解答 解:(1)由sin2B=2sinAsinC,根据正弦定理可得:b2=2ac,
又∵a=b,
可得:b=2c
则$cosA=\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{c}^{2}}{4{c}^{2}}=\frac{1}{4}$.
(2)由(1)知:b=2c,而a=b=$\sqrt{2}$,
根据$cosA=\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{4}$
解得:c=$\frac{\sqrt{2}}{2}$.
∵cosA=$\frac{1}{4}$,则sinA=$\sqrt{1-sinA}=\frac{\sqrt{15}}{4}$,
则${S}_{△ABC}=\frac{1}{2}bcsinA$=$\frac{1}{2}×2\sqrt{2}×\sqrt{2}×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{2}$.

点评 本题考查三角形的正弦定理和余弦定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知集合A={-2,0},B={-2,3},则A∪B={-2,0,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求证:AB⊥PD
(Ⅱ)若E为PD的中点,求证:CE∥平面PAB
(Ⅲ)设平面PAB∩平面PCD=PM,点M在平面ABCD上.当PA⊥PD时,求PM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线2x-y+2=0与直线y=kx+1平行,则实数k的值为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|$\sqrt{2x-1}$>1},则∁RA=(  )
A.{x|x>1}B.{x|x≥$\frac{1}{2}$}C.{x|x≤1}D.{x|x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“-1≤x≤2”是“x2-x-2=0”的(  )
A.充分不必要条件B.必要不充分条件
C.冲要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=(x2-3)ex的单调减区间为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a=0.78,b=80.7,c=log0.78,则a、b、c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn=an+n2-1(n∈N*).
(1)求{an}的通项公式;
(2)求证:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}<\frac{3}{4}$.

查看答案和解析>>

同步练习册答案