精英家教网 > 高中数学 > 题目详情
如图,设A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为等边三角形.记以Ox轴正半轴为始边,射线OA为终边的角为θ.
(1)若点A的坐标为(),求的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

【答案】分析:(1)根据A的坐标,利用三角函数的定义,求出sinθ,cosθ,再利用二倍角公式,即可得到结论;
(2)由题意,cos∠COB=cos(θ+60°),利用余弦定理,可得函数f(θ)的解析式,从而可求函数的值域.
解答:解:(1)∵A的坐标为(),以Ox轴正半轴为始边,射线OA为终边的角为θ
∴根据三角函数的定义可知,sinθ=,cosθ=
===20;
(2))∵△AOB为正三角形,∴∠AOB=60°.
∴cos∠COB=cos(θ+60°)
∴f(θ)=|BC|2 =|OC|2+|OB|2-2|OC|•|OB|cos∠COB=2-2cos(θ+60°)
∵θ∈R,∴f(θ)∈[1,3].
点评:本题考查任意角的三角函数的定义,考查余弦定理求边长的平方,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A、B是单位圆O上的动点,C是圆与x轴正半轴的交点,设∠COA=α.
(1)当点A的坐标为(
3
5
,  
4
5
)
时,求sinα的值;
(2)若0≤α≤
π
2
,且当点A、B在圆上沿逆时针方向移动时,总有∠AOB=
π
3
,试求BC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:A、B是单位圆上的动点,C是单位圆与x轴正半轴的交点,
∠AOB=
π
6
,记∠COA=θ,θ∈(0,π),△AOC的面积为S.
(Ⅰ)设(θ)=OB→•OC→+2S,求f(θ)的最大值以及此时θ的值;
(Ⅱ)当A点坐标为(-
3
5
4
5
)
时,求|
BC
|2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)如图,设A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为等边三角形.记以Ox轴正半轴为始边,射线OA为终边的角为θ.
(1)若点A的坐标为(
3
5
4
5
),求
sin2θ+sin2θ
cos2θ+cos2θ
的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设A(
3
2
1
2
)
是单位圆上一点,一个动点从点A出发,沿圆周按逆时针方向匀速旋转,12秒旋转一周.2秒时,动点到达点B,t秒时动点到达点P.设P(x,y),其纵坐标满足y=f(t)=sin(ωt+φ)(-
π
2
<φ<
π
2
)

(1)求点B的坐标,并求f(t);
(2)若0≤t≤6,求
AP
AB
的取值范围.

查看答案和解析>>

同步练习册答案