精英家教网 > 高中数学 > 题目详情
(本小题共12分)已知椭圆E:的焦点坐标为),点M()在椭圆E上(1)求椭圆E的方程;(2)O为坐标原点,⊙的任意一条切线与椭圆E有两个交点,求⊙的半径。
(Ⅰ)   (Ⅱ)  
(1)∵椭圆E: 经过M(-2,) ,一个焦点坐标为),∴ ,椭圆E的方程为; ………5分
(2)当⊙的切线斜率存在时,设⊙的切线方程为
,
,则
,∴,即,
,即,∵直线为⊙的一条切线,∴圆的半径,即,
经检验,当⊙的切线斜率不存在时也成立.∴.…14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点,且与直线相切.
(1)求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,且满足
?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的方程为:
(1)若曲线是椭圆,求的取值范围;
(2)若曲线是双曲线,且有一条渐近线的倾斜角为,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)一束光线从点出发,经直线l:上一点反射后,恰好穿过点.(1)求点的坐标;(2)求以为焦点且过点的椭圆的方程; (3)设点是椭圆上除长轴两端点外的任意一点,试问在轴上是否存在两定点,使得直线的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,动点满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,若,求直线的方程;
(Ⅲ)设为曲线在第一象限内的一点,曲线处的切线与轴分别交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线 与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得?
② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以O为原点,所在直线为轴,建立如 所示的坐标系。设,点F的坐标为,点G的坐标为
(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;
(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;
(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆 (a>b>0)的左顶点为A,若椭圆上存在一点P,使∠OPA= (O为原点),求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案