精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足:a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N*).
(1)证明:对一切n∈N*有an<an+1
(2)证明:当n≥2时,$\frac{4n-1}{9n}$<an

分析 (1)由已知得an>0,an+1-an=$\frac{{a}_{n}^{2}}{{n}^{2}}$>0,由此能证明对一切n∈N*,有an<an+1
(2)由(1)可得数列{an}是递增数列,结合已知求出${a}_{2}=\frac{4}{9}$,再由当n≥2时,${a}_{n}≥{a}_{2}=\frac{4}{9}>\frac{4n-1}{9n}$得答案.

解答 证明:(1)∵a1=$\frac{1}{3}$>0,∴an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$>0,则an+1-an=$\frac{{a}_{n}^{2}}{{n}^{2}}$>0,即an<an+1
(2)由(1)知,数列{an}是递增数列,
∵${a}_{1}=\frac{1}{3}$,且an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$,∴${a}_{2}={a}_{1}+\frac{{{a}_{1}}^{2}}{1}=\frac{1}{3}+\frac{1}{9}=\frac{4}{9}$,
∴当n≥2时,${a}_{n}≥{a}_{2}=\frac{4}{9}>\frac{4n-1}{9n}$.

点评 本题考查不等式的证明,是中档题,关键是运用了数列的函数特性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,已知向量$\overrightarrow{a}$=(-1,2),点A(8,0),B(ksinθ,m)(0≤θ≤$\frac{π}{2}$,m∈R)
(1)若$\overrightarrow{AB}$$⊥\overrightarrow{a}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,求向量$\overrightarrow{OB}$的坐标;
(2)若向量$\overrightarrow{AB}$与向量$\overrightarrow{a}$共线,且当k>4时,msinθ取得最大值4,求$\overrightarrow{OA}•\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,O为中线AM上的动点.
(1)证明:$\overrightarrow{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{OM}$
(2)设|$\overrightarrow{AM}$|=2,$\overrightarrow{OM}$=t$\overrightarrow{AM}$(0≤t≤1),试把$\overrightarrow{OA}$•($\overrightarrow{OB}+\overrightarrow{OC}$)表示为t的函数f(t),并求当O在AM上何处时,f(t)的值最小,最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.试求二次函数f(x)=x2+2ax+3在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=-x2-2x+2(-2≤x≤0)的最大最小值,并求取得最大,最小值对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如果对任意实数x.y都有f(x+y)=f(x)•f(y)且f(1)=2.
(1)求f(2),f(3),f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)证明:f(x)在定义域上是增函数;
(3)解不等式f(x(x+$\frac{1}{2}$))≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算定积分
(1)${∫}_{0}^{π}$(sinx-cosx)dx;
(2)${∫}_{0}^{2}$|1-x|dx.

查看答案和解析>>

同步练习册答案