精英家教网 > 高中数学 > 题目详情
若(ax-1)3的展开式中各项的系数和为27,则实数a的值是______.
∵(ax-1)3=a3x3-3a2x2+3ax-1.
等式右侧x取1即为各项系数的和,
则a3-3a2+3a-1=(a-1)3
由已知得:(a-1)3=27,解得a=4.
故答案为:4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).
(1)求取出的小球中有相同编号的概率;
(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知f(x)=(x-5)7+(x-8)5=a0+a1(x-6)+a2(x-6)2+…+a7(x-6)7,求a0+a1+a2+a3+a4+a5+a6+a7的值.
(2)在二项式(
x
+
3
x
)^
的展开式中,各项系数和为A,各二项式系数和为B,且A+B=72,求含(
x
-
3
x
)^2n
式中含x
3
2
的项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(1+2
x
3(1-
3x
5的展开式中x的系数是(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2x+
3
)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6
,则(a0+a2+a4+a6)2-(a1+a3+a5)2的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(
x
-
2
3x2
)
n展开式中第三项的系数比第二项的系数大162,则x的一次项系数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(1-x)5•(1+x)4的展开式中x3项的系数为(  )
A.-6B.-4C.4D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在二项式(
x
+
1
2
4x
n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=C
04
x4+C
14
x3+C
24
x2+C
34
x+C
44
图象的对称轴方程为______.

查看答案和解析>>

同步练习册答案