精英家教网 > 高中数学 > 题目详情
如图,在三棱柱中,侧棱垂直于底面,分别为的中点.
(1)求证:平面平面
(2)求证:平面
(3)求三棱锥的体积.
(3)
试题分析:(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.
(1)在三棱柱中,底面ABC,所以AB,
又因为AB⊥BC,所以AB⊥平面,因为AB平面,所以平面平面.
(2)取AB中点G,连结EG,FG,
因为E,F分别是的中点,所以FG∥AC,且FG=AC,
因为AC∥,且AC=,所以FG∥,且FG=
所以四边形为平行四边形,所以EG,
又因为EG平面ABE,平面ABE,
所以平面.
(3)因为=AC=2,BC=1,AB⊥BC,所以AB=
所以三棱锥的体积为:==.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•湖北)如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为3,点E在侧棱AA1上,点F在侧棱BB1上,且AE=2,BF=

(I) 求证:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是边长为2的正方形,,ED=1,//BD,且.
(1)求证:BF//平面ACE;
(2)求证:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是(  )
A.EH∥FG
B.四边形EFGH是矩形
C.Ω是棱柱
D.Ω是棱台

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则(   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体中, 是菱形,是矩形,,

(1)求证:平
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是正方体的棱的中点,点分别是线段上的点,则与平面垂直的直线有(   )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

同步练习册答案