精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1,
(1)求f(1),f(
1
9
),f(9)的值,
(2)如果f(x)+f(2-x)<2,求x的取值范围.
分析:(1)对题设条件中的恒等式进行赋值,依次可求出f(1),f(
1
9
),f(9)的值
(2)利用题设条件将f(x)+f(2-x)<2这为f[x(2-x)]<f(
1
9
),再利用函数f(x)是定义在(0,+∞)上的减函数解不等式.
解答:解:(1)令x=y=1,则f(1)=f(1)+f(1),∴f(1)=0(2分)
令x=3,y=
1
3
,则f(1)=f(3)+f(
1
3
),∴f(3)=-1
∴f(
1
9
)=f(
1
3
× 
1
3
)=f(
1
3
)+f(
1
3
)=2(4分)
∴f(9)=f(3×3)=f(3)+f(3)=-2(6分)
(2)∵f(x)+f(2-x)=f[x(2-x)]<2=f(
1
9
),(8分)
又由函数f(x)是定义在(0,+∞)上的减函数得:
x(2-x)>
1
9
x>0
2-x>0
(11分)
解之得:x∈(1-
2
2
3
,1+
2
2
3
)
.(13分)
点评:本题考查抽象函数及其应用,考查了根据恒等式的形式以及要求的值灵活赋值求函数值的能力,以及利用函数的性质解不等式的能力,求解本题的关键是恰当赋值,求解第二问时恰当的变形是解题的关键,在根据单调性转化时要注意转化的造价,不要忘记定义域的限制条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案