精英家教网 > 高中数学 > 题目详情
已知双曲线C:x2-
y2
b2
=1(b>0),过点M(1,1)作直线l交双曲线C于A、B两点,使得M是线段AB的中点,则实数b取值范围为(  )
A、(1,
2
B、(-1,0)∪(0,1)
C、(0,1)
D、(1,+∞)
分析:由点斜式设出直线l的方程,与双曲线的方程联立,两交点的中点坐标是M(1,1)由中点坐标公式建立方程求出参数的值即可
解答:解:由题意设l:y-1=k(x-1),即y=kx-k+1,代入x2-
y2
b2
=1,
整理得(b2-k2)x2+2k(k-1)x-(k-1)2-b2=0
不妨令A、B两点的坐标分别为(x1,y1),(x2,y2
则有x1+x2=2,
所以x1+x2=2=
2k2-2k
k2-b2
,整理得k=b2
当直线与曲线有两个交点时,可得△>0,用b代替k整理出
4b2(-b2+1)>0
即b2-1<0
∴-1<b<1,
又b>0,故0<b<1为所求
故选C.
点评:本题考查直线与圆锥曲线的关系,解题的关键是根据条件中所给的中点的坐标,得到两个变量之间的关系,用要求的变量代换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2
4
=1,过点P(1,1)作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有(  )
A、1条B、2条C、3条D、4条

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生在(1)(2)中任选一题作答,每小题12分.如都做,按所做的第(1)题计分.
(1)如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连接B、D,若BC=
5
-1
,求AC的长.
(2)已知双曲线C:x2-y2=2,以双曲线的左焦点F为极点,射线FO(O为坐标原点)为极轴,点M为双曲线上任意一点,其极坐标是(ρ,θ),试根据双曲线的定义求出ρ与θ的关系式(将ρ用θ表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-y2=1的左右焦点分别为F1、F2,P是C上一点,∠F1PF2=60°,
①求F1、F2的坐标;
②求双曲线的准线方程及离心率;
③求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2b2
=1(b>0,b≠1)
的左右焦点为F1,F2,过点F1的直线与双曲线C左支相交于A,B两点,若|AF2|+|BF2|=2|AB|,则|AB|为
 

查看答案和解析>>

同步练习册答案