精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数f(x)的单调区间;
(2)若关于x的不等式lnx<mx对一切x∈[a,2a](其中a>0)都成立,求实数m的取值范围;
(3)某同学发现:总存在正实数a、b(a<b),使ab=ba.试问:他的判断是否正确?若不正确,请说明理由;若正确,请写出a的取值范围(不需要解答过程).

解:(1)定义域为(0,+∞),,令,则x=e,
当x变化时,f'(x),f(x)的变化情况如下表:

∴f(x)的单调递增区间为(0,e);f(x)的单调递减区间为(e,+∞).

(2)∵不等式lnx<mx对一切x∈[a,2a](其中a>0)都成立,
∴分离m得,对一切x∈[a,2a](其中a>0)都成立,
∴下面即求在x∈[a,2a](其中a>0)上的最大值;
∵a>0,由(2)知:f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
当2a≤e时,即时,f(x)在[a,2a]上单调递增,∴
当a≥e时,f(x)在[a,2a]上单调递减,∴
当a<e<2a时,即时,f(x)在[a,e]上单调递增,f(x)在[e,2a]上单调递减,

综上得:
时,
当a≥e时,
时,
(3)正确,a的取值范围是1<a<e.(16分)
注:理由如下,考虑函数f(x)的大致图象.
当x→+∞时,f(x)→0.
又∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴f(x)的图象如图所示.

∴总存在正实数a、b且1<a<e<b,使得f(a)=f(b),
,即ab=ba,此时1<a<e.
分析:(1)先确定定义域为(0,+∞),求导,则由“f′(x)≥0,为增区间,f′(x)≤0,为减区间”求解.
(2)将“不等式lnx<mx对一切x∈[a,2a](其中a>0)都成立”转化为:“对一切x∈[a,2a](其中a>0)都成立,”只要求得在x∈[a,2a](其中a>0)上的最大值即可.
(3)根据导数,作出函数f(x)的大致图象.易知当x→+∞时,f(x)→0.又∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,由,即得ab=ba
点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围时,往往转化为求相应函数的最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案