精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xlnx.
(1)不等式f(x)>kx﹣ 对于任意正实数x均成立,求实数k的取值范围;
(2)是否存在整数m,使得对于任意正实数x,不等式f(m+x)<f(m)ex恒成立?若存在,求出最小的整数m,若不存在,说明理由.

【答案】
(1)解:对于任意正实数x,不等式f(x)>kx﹣ 恒成立,

即为k<lnx+ ,x>0,

令g(x)=lnx+ ,x>0,则g′(x)= =

在(0, )上,g′(x)<0,g(x)递减,

在( ,+∞)上,g′(x)>0,g(x)递增,

即有g(x)在x= 处取得极小值,且为最小值1﹣ln2,

则k<1﹣ln2,

故实数k的取值范围是(﹣∞,1﹣ln2)


(2)解:∵f(m+x)<f(m)ex恒成立,

∴(m+x)ln(m+x)<mlnmex

恒成立,

令g(x)= ,g′(x)=

设p(x)=1+(1﹣x)lnx,p′(x)= ﹣1﹣lnx,而p′(1)=0且p′(x)递减,

∴x∈(0,1)时,p′(x)>0,x∈(1,+∞)时,p′(x)<0,

故p(x)在(0,1)递增,在(1,+∞)递减;

又x→0,p(x)→﹣∞,p(1)=1>0,x→+∞时,p(x)→﹣∞,

由零点的存在定理,p(x)=0在(0,1),(1,+∞)内各有一根x1<1<x2

∴x∈(0,x1),g′(x)<0,x∈(x1,x2),g′(x)>0,x∈(x2,+∞),g′(x)<0,

∴g(x)在(0,x1)递增,在(x1,x2)递减,在(x2,+∞)递增,

∵p(2)=1﹣ln2>0,p(3)=1﹣2ln3<0,故x2∈(2,3),

∴m=3时,g(x)在(3,+∞)递减,此时,g(3+x)<g(3)恒成立,

若m=1,2,则g(x2)>g(m),矛盾,

综上,存在最小正整数m=3


【解析】(1)对于任意正实数x,不等式f(x)>kx﹣ 恒成立,即为k<lnx+ ,x>0,令g(x)=lnx+ ,x>0,求出导数,求得单调区间,得到极小值也为最小值,即可得到k的范围;(2)问题转化为 恒成立,令g(x)= 求出g′(x)= ,设p(x)=1+(1﹣x)lnx,通过讨论p(x)的单调性,判断出g(3+x)<g(3)恒成立,从而求出满足条件的m的值即可.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)= (x>0).
(1)求f(x)的最大值;
(2)证明:对任意实数a、b,恒有f(a)<b2﹣3b+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一组数据如表:

x

1

2

3

4

5

y

1.3

1.9

2.5

2.7

3.6


(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式: = = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2 , 且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2 , 则e1e2+1的取值范围为(
A.(1,+∞)
B.( ,+∞)
C.( ,+∞)
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m,高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(
A.120°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式|x+1|+| ﹣1|≤a有解,则实数a的取值范围是(
A.a≥2
B.a<2
C.a≥1
D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为12 000元,生产1车皮乙种肥料产生的利润为7 000元,那么可产生的最大利润是(
A.29 000元
B.31 000元
C.38 000元
D.45 000元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),满足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函数,又α、β是锐角三角形的两个内角,则(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

同步练习册答案