精英家教网 > 高中数学 > 题目详情
18.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

分析 判断旋转后的几何体的形状,然后求解几何体的体积.

解答 解:由题意可知旋转后的几何体如图:
将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为
圆柱的体积减去圆锥的体积:$π•{1}^{2}•2-\frac{1}{3}×{1}^{2}π×1$=$\frac{5π}{3}$.
故选:C.

点评 本题考查旋转几何体的体积的求法,判断旋转后几何体的形状是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在矩形ABCD中,AB=$\sqrt{2}$,BC=2,E为BC中点,把△ABE和△CDE分别沿AE、DE折起使B与C重合于点P,
(1)求证:平面PDE⊥平面PAD;
(2)求二面角P-AD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=ax3+x在区间[1,+∞)内是减函数,则(  )
A.a≤0B.$a≤-\frac{1}{3}$C.a≥0D.$a≥-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线E:y2=2px(p>0)的焦点F,E上一点(3,m)到焦点的距离为4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过F作直线l,交抛物线E于A,B两点,若直线AB中点的纵坐标为-1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两直线l1:x+my+4=0,l2:(m-1)x+3my+3m=0.若l1∥l2,则m的值为(  )
A.0B.0或4C.-1或$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知圆心为C(0,-2),且被直线2x-y+3=0截得的弦长为$4\sqrt{5}$,则圆C的方程为x2+(y+2)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥S-ABCD中,底面ABCD是边长为4的菱形,∠ABC=60°,SA⊥平面ABCD,且SA=4,M在棱SA上,且AM=1,N在棱SD上且SN=2ND.
(Ⅰ)求证:CN∥面BDM;
(Ⅱ)求三棱锥S-BDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=lnx+ax2-2在区间($\frac{1}{2}$,2)内存在单调递增区间,则实数a的取值范围是(  )
A.(-∞,-2]B.(-$\frac{1}{8}$,+∞)C.(-2,-$\frac{1}{8}$)D.(-2,+∞)

查看答案和解析>>

同步练习册答案