精英家教网 > 高中数学 > 题目详情
13.正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BB1,CD的中点,则点F到平面A1D1E的距离为(  )
A.$\frac{3}{10}$aB.$\frac{3\sqrt{7}}{10}$aC.$\frac{3\sqrt{5}}{10}$aD.$\frac{7}{10}$a

分析 取CC1的中点O,连接D1O,OE,OF,D1F,点F到平面A1D1E的距离=点F到平面OD1E的距离h,由等体积可得点F到平面A1D1E的距离.

解答 解:取CC1的中点O,连接D1O,OE,OF,D1F,则△D1FO的面积S=a2-2×$\frac{1}{2}×a×\frac{a}{2}$-$\frac{1}{2}×\frac{a}{2}×\frac{a}{2}$=$\frac{3}{8}{a}^{2}$
点F到平面A1D1E的距离=点F到平面OD1E的距离h,
由等体积可得$\frac{1}{3}×\frac{1}{2}\sqrt{{a}^{2}+\frac{1}{4}{a}^{2}}×a×h$=$\frac{1}{3}×\frac{3}{8}{a}^{2}×a$,
∴h=$\frac{3\sqrt{5}}{10}$a.
故选:C.

点评 本题考查点F到平面A1D1E的距离,考查体积公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者.若f(a+2)>f(a),则实数a的取值范围为(  )
A.(-1,0)B.[-2,0]C.(-∞,-2)∪(-1,0)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为(  )
A.$\frac{{2+\sqrt{2}}}{2}$B.$2+\sqrt{2}$C.$1+\sqrt{2}$D.$\frac{{1+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在长为10cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积不小于9cm2的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设 a=sin46°,b=cos46°,c=tan46°.则(  )
A.c>a>bB.a>b>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,x轴非负半轴平分∠AOB,∠AOx=α,动圆P截OA所得弦MN=2a,截OB所得弦SQ=2b,试求动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线y=x-m与抛物线y2=2x相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
(1)当m=2时,证明:OA⊥OB;
(2)是否存在实数m,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某校1000高三学生在一次统测中的数学成绩(满分150分)X服从正态分布N(100,152),据统计,分数在110分以上的考生共有360人.则分数在90分以上的学生共有640人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(1<a<4)的右顶点到直线x=4的距离为1,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案