精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x2-(a+1)x-4(a+5),g(x)=ax2-(3a+1)x+3,其中a<0.若存在正整数m、n,当x0∈(m,n)时,有f(x0)<0,g(x0)>0同时成立,则m+n的值为(  )
A.5B.7C.9D.7或8或9

分析 分别求解f(x)<0,g(x)<0,再求含正整数的交集,由题意可得存在正整数m、n,x0∈(m,n),可得(m,n)⊆(3,a+5),由g(0)>0,g(a+5)<0,可得a的范围,进而得到m,n的范围,可得m=3,n=4,即可得到答案.

解答 解:令f(x)<0,即x2-(a+1)x-4(a+5)<0,
解得-4<x<a+5,①
即有a+5>0,解得a>-5;
令g(x)<0,即ax2-(3a+1)x+3<0,
解得x>3或x<$\frac{1}{a}$,②
由题意,存在正整数m、n,x0∈(m,n),
由①②可得(m,n)⊆(3,a+5),
当a<0时,因为g(0)=3>0,
故只能g(a+5)=a(a+5)2-(3a+1)(a+5)+3<0,
解得-2<a<0,或a<-$\frac{5+\sqrt{29}}{2}$,
又因为a>-5,所以-2<a<0,
此时n≤a+5<5,
∵正整数m,n,∴3≤m<n≤4,
则m=3,n=4,即m+n=7.
故选B.

点评 本题考查了函数的零点,不等式的求解,考查集合的包含关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
 (I)求椭圆C的方程;
(II)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点.射线PO交椭圆E于点Q.
(i)求$\frac{|OQ|}{|OP|}$的值,(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,an=8an-3(n≥4,且n∈N*).且4a1,${{a}_{2}}^{2}$,a3成等差数列
(1)求数列{an}的通项公式;
(2)令b1=1,bn=$\frac{{a}_{n-1}}{2}$(n≥2,且n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任一点,F1,F2为椭圆的左、右焦点,求|PF1|的 最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等比数列{an}中,已知对任意正整数n,a1+a2+…+an=3n-1,则a12+a22+…+an2=$\frac{{9}^{n}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的偶函数f(x)在(0,+∞)上为增函数,且f($\frac{1}{3}$)=0,求使不等式f(x+1)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(1)若f(x)=cos2(2x+$\frac{π}{6}$),则f′(x)=-2sin(4x+$\frac{π}{3}$);
(2)若f(x)=ln$\sqrt{\frac{1-x}{1+x}}$,则f′(x)=$\frac{1}{{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,直线x-2y+1=0被圆(x-2)2+(y+1)2=9截得的弦长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的偶函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+2)=f(x);②若0≤x1<x2≤1,都有f(x1)>f(x2),则下列不等式中正确的是(  )
A.f(5.8)<f(-2)<f(6.8)B.f(5.8)<f(6.8)<f(-2)C.f(-2)<f(5.8)<f(6.8)D.f(6.8)<f(5.8)<f(-2)

查看答案和解析>>

同步练习册答案