精英家教网 > 高中数学 > 题目详情

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(
A.
B.
C.
D.

【答案】A
【解析】解:因为 f(x+2)=f(x)﹣f(1),且f(x)是定义域为R的偶函数 令x=﹣1 所以 f(﹣1+2)=f(﹣1)﹣f(1),f(﹣1)=f(1)
即 f(1)=0 则有,f(x+2)=f(x)
f(x)是周期为2的偶函数,
当x∈[2,3]时,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2
图象为开口向下,顶点为(3,0)的抛物线
∵函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,
∵f(x)≤0,
∴g(x)≤0,可得a<1,
要使函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,
令g(x)=loga(|x|+1),
如图要求g(2)>f(2),可得

就必须有 loga(2+1)>f(2)=﹣2,
∴可得loga3>﹣2,∴3< ,解得﹣ <a< 又a>0,
∴0<a<
故选A;
根据定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),可以令x=﹣1,求出f(1),再求出函数f(x)的周期为2,当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,画出图形,根据函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,利用数形结合的方法进行求解;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4—4:坐标系与参数方程】

将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

Ⅰ)写出C的参数方程;

设直线C的交点为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常数,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间和极值;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有 成立.
(1)判断f(x)在[﹣1,1]上的单调性,并证明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三内角A、B、C的对边分别是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大小;
(Ⅱ)若a= ,sinC= sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N* , 则S10的值为(
A.﹣110
B.﹣90
C.90
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)利用“五点法”画出函数 内的简图

x

x+

y


(2)若对任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

同步练习册答案