精英家教网 > 高中数学 > 题目详情
19.圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,当圆C1与圆C2内切时,m的取值是-2或-1.

分析 先分别求出两圆的圆心和半径,再求出圆心距,利用两圆内切的性质能求出结果.

解答 解:∵圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,
∴圆C1的圆心C1(m,-2),半径r1=$\frac{1}{2}\sqrt{4{m}^{2}+16-4{m}^{2}+20}$=3,
圆C2的C2(-1,m),半径r=$\frac{1}{2}\sqrt{4+4{m}^{2}-4{m}^{2}+12}$=2,
∴|C1C2|=$\sqrt{(m+1)^{2}+(-2-m)^{2}}$=$\sqrt{2{m}^{2}+6m+5}$,
∵圆C1与圆C2内切,
∴|C1C2|=|r1-r2|=|3-2|=1,
∴$\sqrt{2{m}^{2}+6m+5}$=1,
解得m=-2或m=-1.
故答案为:-2或1.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意两圆内切的性质和两点间距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的标准方程;
(2)已知直线y=kx-1,当直线与抛物线有公共点时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在二面角α-l-β的棱l上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,若二面角α-l-β的大小为$\frac{π}{3}$,AB=AC=2,CD=$\sqrt{11}$,则BD=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.P是椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$上的一点,F1、F2分别是左右焦点,若|PF1|=3|PF2|,则过点P的椭圆的切线的斜率是(  )
A.$±\sqrt{2}$B.$±\frac{{\sqrt{2}}}{3}$C.$±\frac{{\sqrt{2}}}{4}$D.$±\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线AB与PQ的位置关系(  )
A.平行B.垂直C.重合D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若3a+4b=ab,a>0且b>0,则a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线y2=4px(p>0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在长方体ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=3,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C的中点,求M,N两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“x<4”是“$\sqrt{x}$<2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

同步练习册答案