精英家教网 > 高中数学 > 题目详情
一扇形的周长为16,则当其半径r和圆心角α各为何值时,面积S最大,最大值为多少?
解:设扇形的半径为r,弧长为l,
则l+2r=16,即l=16-2r(0<r<8).
扇形的面积lr,将上式代入,
得S=(16﹣2r)r=-r2+8r=-(r-4)2+16,
所以当且仅当r=4时,S有最大值16,
此时l=16﹣2×4=8,α==2 rad.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一扇形的周长为16,则当其半径r和圆心角α各为何值时,面积S最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

一扇形的周长为16,则当此扇形的面积取最大时其圆心角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一扇形的周长为16,则当其半径r和圆心角α各为何值时,面积S最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省抚顺市抚顺县高一4月月考数学试卷(解析版) 题型:解答题

一扇形的周长为16,则当其半径r和圆心角α各为何值时,面积S最大,最大值为多少?

查看答案和解析>>

同步练习册答案